http:wetenschap'vpro'nlprogrammanoorderlichtindex'shtml2785571 2848322 3855404 4264831 - PowerPoint PPT Presentation

1 / 43
About This Presentation
Title:

http:wetenschap'vpro'nlprogrammanoorderlichtindex'shtml2785571 2848322 3855404 4264831

Description:

Bioloog Bert Kempenaers, in 1993 verbonden aan de ... jonge vogeltjes desondanks keurig verzorgt en van voer voorziet, als ware het zijn eigen jongen. ... – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 44
Provided by: Sch90
Category:

less

Transcript and Presenter's Notes

Title: http:wetenschap'vpro'nlprogrammanoorderlichtindex'shtml2785571 2848322 3855404 4264831


1
Is sex nodig?
Noorderlicht, zie ZOS repository op blackboard
Bioloog Bert Kempenaers, in 1993 verbonden aan de
Universiteit van Antwerpen, gebruikte 'DNA
fingerprinting' om het gedrag te onderzoeken van
een populatie pimpelmezen in een bos. De
vogeltjes leken aanvankelijk zo aandoenlijk een
paartje komt bij elkaar, ze bouwen een nest en
gezamelijk zorgen ze voor het nageslacht.
Kempenaers ontdekte echter dat de waarheid verre
van romantisch was. De pimpelmeesvrouwtjes
blijken er bepaald niet vies van om even bij de
buurman aan te wippen als hun eigen mannetje niet
oplet. Soms laat ze zich zelfs uitsluitend
bevruchten door de mannetjes uit de aangrenzende
territoria. De eieren die ze dan legt, brengen
dan ook geen kroost voort van haar eigen mannetje
- die de jonge vogeltjes desondanks keurig
verzorgt en van voer voorziet, als ware het zijn
eigen jongen. De bioloog onderzocht
verschillende kenmerken van de volwassen
mannetjes, en kwam tot de slotsom dat de
populairste pimpelmezen gemiddeld iets langere
pootjes hebben. Of dat ook echt het kenmerk is
waar de pimpelmeesvrouwtjes op vallen, is
onduidelijk. Wel blijken de jongen van de
langpoters een grotere kans te hebben om te
overleven. Van monogaam gedrag onder pimpelmezen,
stelt Kempenaers, is dus geen sprake. In de
populatie die hij onderzocht ging zo'n dertig
procent van de vrouwtjes regelmatig vreemd, wat
er toe leidde dat rond de tien procent van alle
jongen een andere biologische vader heeft dan het
mannetje dat hen verzorgt. Overigens heeft later
onderzoek, daterend van na 1993, bij mensen
precies dezelfde cijfers laten zien in ieder
geval in de Verenigde Staten en Groot-Brittannie
is tien procent van de kinderen niet verwekt door
de man die hen als vader opvoedt, meestal zonder
dat de man (en de kinderen) dat zelf weten.
http//wetenschap.vpro.nl/programma/noorderlicht/i
ndex.shtml?2785571284832238554044264831
2
Zelf Organiserende Systemen (ZOS) - Self
Organising Systems - Vrij Universiteit
Amsterdam Lecture 7 Self Organisation and
AI http//www.cs.vu.nl/zos Martijn
Schut schut_at_cs.vu.nl
3
SOS - Lecture 7
Overview of the Lectures
Introduction Insect-Based Computing
I Insect-Based Computing II Cellular
Automata Criticality DNA and Evolution Self
Organisation and Artificial Intelligence Self
Organising Maps Dynamical Systems
4
SOS - Lecture 7
Overview
  • Artificial Intelligence and Self Organisation
  • Rule Based Agents
  • The Echo System (John Holland)
  • Prisoner's Dilemma in Echo
  • Summary of Self Organisation course
  • Insect-Based Computing
  • Cellular Automata
  • Evolution
  • (15.30 - 16.30) question hour about Mystery

5
SOS - Lecture 7
AI - Brief Selected History
40s, 50s
60s, 70s
80s
90s, 00s
6
SOS - Lecture 7
AI - Brief History of AI
1940s, 1950s Turing Machines 1960s,
1970s Expert Machines (GPS) 1980s Reactive
Intelligence 1990s, 2000s Multi Agent Systems
7
SOS - Lecture 7
AI - Multi Agent Systems
order
Jack
Anne
Xerox
www
Pete
packing
truck
Rob
books
http//www.amazon.com
8
SOS - Lecture 7
AI - Multi Agent Systems
Goals
Abilities
Agent
Beliefs
Etc...
DistributedIntelligence
9
SOS - Lecture 7
AI - Multi Agent Systems
Observe

World
Act
10
SOS - Lecture 7
AI - Multi Agent Systems
Whats in here?

IF THEN IF THEN IF THEN IF THEN
IF THEN IF THEN IF THEN
IF ? condition (observe) THEN ? response
(act)
11
SOS - Lecture 7
AI - Rule-Based Agents
IF stimulus s occurs THEN give response r For
example IF I am hungry, THEN go eat something IF
I am tired, THEN go to bed IF I see an apple,
THEN eat it etctera
12
SOS - Lecture 7
AI - Rule-Based Agents
Complex Adaptive Systems (CAS)
13
SOS - Lecture 7
AI - Rule-Based Agents
  • Foundations of CAS
  • Aggregation
  • Tagging
  • Nonlinearity
  • Flows
  • Diversity
  • Internal Models
  • Building Blocks

Important!
14
SOS - Lecture 7
AI - Echo
  • A grid world, where each site contains resources
    and agents.
  • Resources are represented as a,b,c,d,. Each
    site may have a fountain that provides resources
    on each time-step.
  • Agents have structures represented by stringing
    resource letters together, called chromosomes.
    Additionally, an agent has a reservoir for
    storing resources.
  • The chromosome of an agent consists of a tag
    segment and a control segment.
  • The tag segment of a chromosome contains three
    tags, namely offense, defense and adhesion.
  • The control segment contains three kinds of
    objects conditions, resource transformations,
    and an activity marker. Then there are three
    kinds of conditions exchange, mating and
    replication.

15
SOS - Lecture 7
AI - Echo
  • Echo should be as simple as possible
  • Echo should be designed so that the actions of
    its agents can be understood in a variety of cas
    domains
  • Echo should facilitate experiments on the
    evolution of fitness
  • The primitive mechanisms in Echo should have
    ready counterparts in all cas
  • Echo should be designed to incorporate
    well-known models of particular cas wherever
    possible
  • One should be able to mathematically analyse as
    many aspects of Echo as possible

16
SOS - Lecture 7
AI - Echo
  • focus on information
  • inputs to the system (observe) are handled by
    detectors
  • outputs of the system (act) are handled by
    effectors
  • silimar to program language message processing
    rules
  • if receive message X, then send message Y
  • Rules are building blocks and hypotheses in case
    of conflict
  • Strength of a rule is based on the utility of
    the rule in the past

17
SOS - Lecture 7
AI - Echo - Example
  • Prisoners Dilemma (Game Theory)
  • Two persons charged with committing a robbery
  • Each person can either cooperate (refuse to
    confess) or defect (confess) without knowing what
    the other person does.
  • If both confess, they each get four years
    prison.
  • If both refuse to confess, they get two years.
  • If one confesses and the other one refuses, the
    confessor will make a deal and walk free, while
    the refuser gets jailed for five years.

18
SOS - Lecture 7
AI - Echo - Example
Second Player Cooperate Defect Firs
t Player Cooperate 3, 3 0, 5 Defect 5,
0 1,1
19
SOS - Lecture 7
AI - Echo - Example
  • Conclusions
  • Agents use different strategies
  • tit-for-tat Do unto others as they do unto you
  • not much interesting happens in the world
    without tags
  • without tags, interactions are largely
    defect-defect
  • with tags, some interesting patterns arise
  • agent employs tit-for-tat, and (2) prefers to
    play with other agents that also employ
    tit-for-tat
  • community of these tit-for-tat agents develops

20
SOS - Lecture 7
Economics - Sugarscape
  • Developed by Epstein and Axtell
  • Social Science bottom-up

"On a small, bagel-shaped planet, tribes of
natives -- collectively known as "agents" -- go
about their lives. They reproduce. They eat. They
travel. They squabble over limited resources, or
trade them if doing so is to their mutual
advantage. They exist entirely in a computer.
Welcome to Sugarscape."
21
SOS - Lecture 7
Economics - Sugarscape
Click here for an introduction to Sugarscape
22
SOS - Lecture 7
Economics - Sugarscape
What if there are two different types of agents?
Click here to see what happens
23
SOS - Lecture 7
Economics - Sugarscape
What if we added an extra resource, spice?
Click here to see what happens
24
SOS - Lecture 7
Economics - Sugarscape
Can we do other things with Sugarscape?
Yes we can, click here
25
SOS - Lecture 7
Economics - Sugarscape
Can Sugarscape be implemented in Starlogo?
Yes, of course, Starlogo can do everything! Click
here
26
SOS - Lecture 7
Self Organisation and AI
  • Topics covered
  • Rule-Based Agents
  • Economics

27
SOS - Lecture 7
Self Organisation - An Overview
  • Insect-Based Computing (Lectures 2,3)
  • Cellular Automata (Lecture 4)
  • Evolution (Lecture 5,6)
  • Summary, Questions, Remarks, Conclusions

28
SOS - Lecture 7
SOS - Overview - Insect-Based Computing
  • Ant foraging
  • Division of Labour
  • Brood Sorting
  • Cooperative Transport

29
SOS - Lecture 7
SOS - Overview - Insect-Based Computing
Foraging Ants
30
SOS - Lecture 7
SOS - Overview - Insect-Based Computing
  • Absence of centralized control
  • Global order
  • Redundancy
  • Adaptation

31
SOS - Lecture 7
SOS - Overview - Cellular Automata
  • Life
  • A CA is an array of identically programmed
    automata, or cells,
  • which interact with one another in a
    neighbourhood and have
  • definite state
  • Universal Machines

32
SOS - Lecture 7
SOS - Overview - Cellular Automata
transition rules
T 0
T 1
  • dies if number of alive neighbour cells lt
    2 (loneliness)
  • dies if number of alive neighbour cells gt
    5 (overcrowding)
  • lives is number of alive neighbour cells
    3 (procreation)

33
SOS - Lecture 7
SOS - Overview - Cellular Automata
  • Ulam
  • Turing
  • von Neumann
  • Conway
  • Langton
  • Universal Machines
  • Turing Machines
  • von Neumann Machines
  • Game of Life
  • Self Reproduction

34
SOS - Lecture 7
SOS - Overview - Evolution
  • Reproduction
  • Mutation
  • Fitness
  • Fitness Landscapes

35
SOS - Lecture 7
SOS - Overview - Evolution
  • Evolution
  • Selection
  • Selection with gt 2 species (Huisman)
  • Selection and Self Organisation

36
SOS - Lecture 7
SOS - Overview
  • Emergence
  • Complexity
  • Random

37
SOS - Lecture 7
SOS - Overview
  • What is part of the system?
  • What are the components of the system?
  • What is the environment of the system?
  • Describe the relation between the components.
  • Describe the relation between the system and its
    environment.
  • Describe the self-organisation.
  • What are the emergent properties?

38
Self Organising Systems
  • Master variant of Artificial Intelligence
  • Study years 45

39
Karakteriserende vragen
  • Hoe kunnen dynamische organisatievormen
    gemodelleerd worden ? Welke methoden en
    technieken worden gebruikt?
  • Hoe evolueren organismen om te overleven in
    nieuwe en onbekende situaties (bijvoorbeeld in
    biologie, economie en ecologie)?
  • Hoe bereiken we steeds grotere complexiteit met
    behulp van methoden waarmee evolutie-processen
    nagebootst worden (bijv genetische algoritmen)?

40
Uitstraling
  • Combineert
  • economische, biologische, sociaal-wetenschappelijk
    e basiskennis en vaardigheden
  • organisatietheorie, economische modellen,
    populatiebiologie, empirisch denken, spreken en
    schrijven
  • hoog beta gehalte
  • programmeren,logica, multi-agent systemen

41
Obligatory Courses
  • Datamining 4
  • Simulatie van Organisaties 3
  • Organisatietheorie (SCW) 4
  • Zelf-organiserende systemen II 5
  • Economische Modellen 5 (Economie)

42
Recommended Courses
  • Evolutiebiologie 6
  • Evolutionaire Genetica 4
  • Neurobiologie van Gedrag 4
  • Organisatie en Leiding 5
  • Gedrag in Organisaties 4

43
Graduation Projects
  • Companies, e.g., TNO, British Telecom, Getronics
  • At VU-AI department
  • Agent Systems Research group
  • Computational Intelligence
  • Knowledge Management Representation group
  • Other universities
  • Government
Write a Comment
User Comments (0)
About PowerShow.com