Biomedical Signal Processing - PowerPoint PPT Presentation

About This Presentation
Title:

Biomedical Signal Processing

Description:

Biomedical Signal Processing Author: Gina Caetano Last modified by: Gina Caetano Created Date: 10/10/2004 8:06:02 PM Document presentation format: On-screen Show – PowerPoint PPT presentation

Number of Views:132
Avg rating:3.0/5.0
Slides: 24
Provided by: GinaCa5
Category:

less

Transcript and Presenter's Notes

Title: Biomedical Signal Processing


1
Biomedical Signal Processing
  • EEG Segmentation
  • Joint Time-Frequency Analysis
  • Gina Caetano
  • 14/10/2004

2
Introduction
  • EEG Segmentation
  • Spectral error measure
  • - Periodogram approach (nonparametric)
  • - Whitening approach (parametric)
  • 2. Joint Time-Frequency Analysis
  • - Linear, nonparametric methods
  • - Nonlinear, nonparametric methods
  • - Parametric methods

3
EEG Segmentation Spectral Error Measure
  • Whitening Approach
  • - Parametric
  • - AR model (reference window)
  • - Linear prediction (test window)
  • - Dissimilarity measure ?2(n)

4
EEG segmentation
  • AR model of order p describes signal in reference
    window
  • Power spectrum of e(n)
  • Quadratic spectral error
  • measure
  • Time domain Asymmetric

5
EEG segmentation
  • AR model of order p describes signal in reference
    window
  • Simpler Asymmetric
  • ad hoc reverse test
  • Symmetric
  • Simulations prediction-based method associated
    with lower false alarm rate than
    correlation-method.

6
Joint Time-Frequency Analysis
  • When in time different frequencies of signal are
    present
  • Linear, nonparametric methods
  • - Linear filtering operation
  • - Short-time Fourier transform
  • - Wavelet transform
  • Nonlinear, nonparametric methods
  • - Wigner-Ville Distribution (ambiguity function)
  • - General Time-Frequency distributions Cohens
    class
  • Parametric methods
  • - Statistical model with time-varying parameters
  • - AR model parameter estimation (slow changes in
    time)

7
Joint Time-Frequency Analysis
  • When in time different frequencies of signal are
    present
  • Linear, nonparametric methods
  • - Linear filtering operation
  • - Short-time Fourier transform
  • - Wavelet transform
  • Nonlinear, nonparametric methods
  • - Wigner-Ville Distribution (ambiguity function)
  • - General Time-Frequency distributions Cohens
    class
  • Parametric methods
  • - Statistical model with time-varying parameters
  • - AR model parameter estimation (slow changes in
    time)

8
Short-Time Fourier Transform
  • 2D modified Fourier transform
  • ?(t) length resolution in time and frequency

9
Short-Time Fourier Transform
  • Spectrogram

10
Short-Time Fourier Transform
  • Spectrogram

EEG
Spectrogram
Diastolic blood pressure
11
Short-Time Fourier Transform
  • Spectrogram
  • EEG

1 s Hamming window
2 s Hamming window
0.5 s Hamming window
12
Joint Time-Frequency Analysis
  • Linear, nonparametric methods
  • - Linear filtering operation
  • - Short-time Fourier transform
  • - Wavelet transform
  • Nonlinear, nonparametric methods
  • - Wigner-Ville Distribution (ambiguity function)
  • - General Time-Frequency distributions Cohens
    class
  • Parametric methods
  • - Statistical model with time-varying parameters
  • - AR model parameter estimation (slow changes in
    time)

13
Wigner-Ville Distribution (WVD)
  • Ambiguity Function

14
Wigner-Ville Distribution (WVD)
  • Ambiguity Function

Analytic signal
Analytic Ambiguity Function
15
Wigner-Ville Distribution (WVD)
  • WVD Continuous-time definition

Modulated Gaussian Signal
Spectrogram
WVD
16
Wigner-Ville Distribution (WVD)
  • WVD Limitations

Two-components Signal
Spectrogram
Wigner-Ville distribution
17
Joint Time-Frequency Analysis
  • Linear, nonparametric methods
  • - Linear filtering operation
  • - Short-time Fourier transform
  • - Wavelet transform
  • Nonlinear, nonparametric methods
  • - Wigner-Ville Distribution (ambiguity function)
  • - General Time-Frequency distributions Cohens
    class
  • Parametric methods
  • - Statistical model with time-varying parameters
  • - AR model parameter estimation (slow changes in
    time)

18
Cohens class
  • General time-frequency distribution

Wigner-Ville distribution
pseudoWigner-Ville distribution
Spectrogram
Choi-Williams distribution
19
Cohens class
  • Choi-Williams distribution

Two-components Signal
Wigner-Ville distribution
Choi-William distribution
20
Cohens class
  • Choi-Williams distribution

EEG
Spectrogram
Wigner-Ville distribution
Choi-William distribution
21
Joint Time-Frequency Analysis
  • Linear, nonparametric methods
  • - Linear filtering operation
  • - Short-time Fourier transform
  • - Wavelet transform
  • Nonlinear, nonparametric methods
  • - Wigner-Ville Distribution (ambiguity function)
  • - General Time-Frequency distributions Cohens
    class
  • Parametric methods
  • - Statistical model with time-varying parameters
  • - AR model parameter estimation (slow changes in
    time)

22
Model-based analysis of slowly varying signals
  • Parametric model of signal
  • Time-varying AR model
  • Slow temporal variations
  • Time-varying noise
  • Two adaptive methods
  • Minimization of prediction error
  • LMS minimizes forward prediction error variance
  • Gradient Adaptive Lattice minimizes forward and
    backward prediction error variances

23
Model-based analysis of slowly varying signals
  • LSM Algorithm (AR model, p8)
Write a Comment
User Comments (0)
About PowerShow.com