P541-6 General Presentation - PowerPoint PPT Presentation

1 / 85
About This Presentation
Title:

P541-6 General Presentation

Description:

MiCOM P54x Series 2006 MiCOM P54x Series MiCOM Protection P540 ... – PowerPoint PPT presentation

Number of Views:325
Avg rating:3.0/5.0
Slides: 86
Provided by: Protectio
Category:

less

Transcript and Presenter's Notes

Title: P541-6 General Presentation


1
(No Transcript)
2
MiCOM P54x Series ???????? ????????????????
??????? ????
???
  • ???? 2006

3
MiCOM P54x Series
  • ?????????? ???????????????? ??????? ??????

4
MiCOM Protection
P940 Frequency Protection Relays
P840 Autoreclose Relays
P740 Busbar Protection Relays
P630 Transformer Protection Relays
P540 Line Differential and Unit Protection
P430/P440 Distance Protection Relays
P340 Generator Protection Relays
P240 Universal Motor Protection Relay
P140 Feeder Management Relays
5
P540 ???????? ???????
6
P540 Current Differential Relays-?????????
?????? (non GPS-synch.)
P541 ??? ???????? ??? ???????????????? ???????
40TE / 8
P542 ??? ???????? ??? ???????????????? ??????? ?
????, (60TE / 12)
P543 ??? ????? ? ????????????? ??????? ???? ?
????, (60TE / 12)
P544 ??? ?????, ???????????? ????? 2 ???????????
? ????????????? ???????, (60TE /12)
7
P540 Current Differential Relays -???
????????????? ?????????? ? ?????????? ?
?????????????????? ???????? ?????
  • P545 ??? ????? ? ????????????? ??????? ???? ?
    ????, , (80TE / 19)
  • P546 ??? ?????, ???????????? ????? 2 ???????????
    ? ????????????? ???????, (80TE /19)

GPS synchronised mode described later
8
??????????????? ???????
End A
End B
Relay A
Relay B
????? ?????
IA IB 0 Healthy IA IB ? 0 ( IF) Fault
9
???????????? ?????
I
I
I
A
B
F
I
C
Relay B
End A
End C
IA IB IC 0 Healthy IA IB IC ? 0 (
IF faulty)
10
Current Differential - ???????????
  • ?? ????? ???? ??????????
  • ???????? ??? 3-? ???????? ?????
  • ?????????? ??????????? ????? ??????????
    ?????????????
  • ?? ????????? ?? ???????
  • ???? ? ?? ?? ????? ????????????
  • ?????? ? ?????????

11
????????? ???????? ??????????
0 I I I I I I 0 I 0 . . . . . 0 I 0 I I I I I I 0
?????? ??????
End A
End B
A/D
?P
???????? ?????????
12
Main Features of P540 Relay????????????????
???????
  • ????????????? ???????????? ?????????????????
    ?????? 56 or 64 kbits/s
  • ????? ???????? ?? ?????????? ?????????????? ????
  • ???????? ??????????
  • ??????????? ?????????? ????
  • 2 ? 3 ???????? ?????
  • ????????? ? ??????????? ??????? ???????? ???????
    ? ??????
  • ???????? ????????????? ?????? ? ??????
  • ???????? ?????? ??????? ? ????????????
    ??????????????
  • 8 ???????????????? ?????? ??? ??????????
    ?????????????

13
?????? ??????????
OPGW
14
??????????? ????? ?????????????
P591/2 interface unit
Multiplexer
G.703 or V.35 electrical
850nm ???????????????
P593 interface unit
ISDN
X.21 electrical
15
Multiplexed Optical Link
Earth wire optical fibre
Multiplexer
Multiplexer
34 Mbit/s
Telephone
64k bits/s
Telecontrol
Teleprotection
End A
End B
16
Multiplexed Microwave Link
PCM Multiplexer
PCM Multiplexer
Telephone
64k bits/s
Telecontrol
Teleprotection
End A
End B
17
?????? ??????????? ? ??????????????
IEEE C37.94
?????? ??????????????? ??????????
Multiplexer
850nm ???????????????
18
IEEE C37.94 ?????? ?????????
19
??? ?????? IEEE C37.94 ? J ??????????? ?????????
??? ????????? ? ?????????? ???????
20
?????????? ?????? ??? ??????? ??????????
850nm Multi 1300nm Multi 1300nm Multi 1550nm
Single Mode Mode Mode
Mode ???????? -19.8dBm -13dBm -13dBm -13dBm
??????????? ???????????????? -25.4dBm -40dBm
-40dBm -40dBm????????? Optical
Budget 5.6dB 27.0dB 27.0dB 27.0dB ?????.
2.6dB 24.0dB 24.0dB 24.0dB ????? (3db)
???????? 2.6dB/km 0.8dB/km 0.4dB/km 0.3dB/km
????????? Ma?? 1 km 30km 60km 80km??????????

?????
??????
Key 3dB ??????????? ????? ????????????????
? ??????? ?? ???????? ??????
21
Current Differential
  • 16 bit ???
  • ??????????? ??????? ?? 8 ????? ?? ??????
  • (12 samples/cycle in Disturbance Record)
  • ??????????? ??????? ???? ????? ??????? ??????
    ????? ?? ???? ?????
  • Proven best noise immunity in difficult
    applications adjacent to HVDC, switching noise,
    series compensation etc
  • ????????? ??????? ?? ???????

22
????????? ???? ? ?????????? - 1
N - 1
2
?
I
i exp j n t
?
n
N
n 1
23
????????? ???? ? ?????????? - 2
N-1
I 2
?
s
sin ??t.i
n
n
N
n1
N-1
I 2
i i
?
c
o N
cos ??t.i


n
n
N
2 2
n1
I ? I I
s j c
24
?????? ?????? ??????
Start flag
Address
Data
Frame check
End flag
Status and commands
Current vectors
Timing data
25
?????? ?????? ??????
  • ????????? ???? (01111110) ??? ?????????????
    ?????????
  • ????? ????
  • ????? ??????? ??? ?????????? ??????? ???????????
    ???????
  • ?????????? ? ??????? ? ???????????? ????????
  • 3 ?????? ??????? ????
  • ?????????????? ?????????? (2 ????????? ???
    P541/P542, ????? ?????? ??????? ????????
    P544/P546)
  • CRC
  • ???????? ???? (01111110) ??? ?????????????
    ?????????

24 Bytes
Total
26
???????? ????? ??????????? ???????
Relay B
Relay A
??? ?? ?? ?
??? ???????? ?? ?? ?
????????
27
??????????? ??????? ??????????? ???????
  • ?????????? ??????? ? ????? ????
  • ?????? ????????? ???????
  • ????????????? ????? ???? ??????????? GPS ???
    ???????? ??? ?????????? GPS?
  • ??????????? ???????
  • ??????????? ????????? ??????????? ???????
  • ??????????? ???????? ????????

P545 and P546 only
??? ??????, P541-P546
28
????? ??????????? ???????????????? - 1
Relay B
Relay A
????? ??????
Current vectors
tA1
tB1
tA1
tp1
tA2
tB2
tA3
tB3
tA4
tB4
tA5
tB5
29
????? ??????????? ??????? ????????? - 2
?????????? ????? ??????? tB3 (tA - tp2)
????? ???????? tp1 tp2 1/2 (tA - tA1) - td



Current vectors
tA1
tA1
tB1
tp1
tA2
tB2
tA3
tB3
tp2
tA4
tB4
Current vectors
tA5
tB5
td
tA1
tB3
????? ??????
30
????????? ???????? ????
I (tA4)
??
?
?????????t

???? I (tB3 ) Is j Ic

I cos? j I sin?

?? I (tA4) I (tB3 ) . (cos ????
j sin ???)
I cos (? ? ?) j I sin (??????)
31
???????????????? ??????????????
??? ??? I I I I
???? ??????? k2
diff
????
A
B
C
???? ??????? k1
????
I
I
S1
S2
???? ???
I 1/2 ( I I I )
bias A B C
32
?????????? ????????? ??????? ???????? (1)
  • ???????????? ??????? ??????/???????? ???????? ?
    ????????????? ????????? ???????? ? ?????????????
    ?????????? ???. ????
  • ??????????? ???????? ??????? ?????????? ???????
    ?????? ??????????? ?? ?????? ? ???? ?? ????
  • ?????? ?????????????? ??? ??????? ??????????
    ???????
  • ????? ???????? ? ??????? ????????????

33
?????????? ????????? ??????? ????????(2)
  • ???? ?????????? ???????? ????? ???????????
  • ????? ????????? ?? ??????? ???????? ???????? ?
    ???? ??? ???? ????????? ??????? ?1 ?? 200 ???
    ???????????? ???????????? ??? ?????? ??? ????? ??
    Is2
  • ????????? ??????? ? ??????? ??????????????
    ??????? (??? 0,5 ?) ????? ???????? ???????
    ?????????????????

34
?????????? ????????? ??????? ????????(3)
????
??? ??? I I I I
Bias 200
Bias k2
diff
A
B
C
Bias k1
????
I
I
S1
S2
???? ???
I 1/2 ( I I I )
bias A B C
35
??????????? ?????????? ????
IL
IR
ZL
IchL
IchR
VL
VR
? ??????????? ??? ?????????? ????????????? ???
???????????? ???? ???? ?????? ????? ?543-546
???????? ????????? ??? ?? ???????????
???? ?????? ?????????? ???????????????? ??? ??
????? ?????????? ?????????????
36
??????? ????????? ???? ??????/??
A/km
A/km
30
1
1.2
0.3
11kV
400kV
Line Volts
Underground cables
Overhead lines
37
P541/ P542 ?????? ??????????????
38
????????? ?????? ??????????
Dy1 (-30 )
Yy0
Yd11
30
0
87
87
Yy0, Yd1, Yd5, Yy6, Yd7, Yd11, Ydy0 etc. 0,
-30, -150, 180, 150, 30, 0 . etc.
39
?????? ????-??????
V
?
?

m
I
m
??????? ?????
?
-
m
I
m
?
2
m
?????????? ??? ??????????
?
V
40
Example MV ApplicationTeed Feeder Protection
End A
End B
I
F
  • Differential protection can be IDMT or DT delayed
    to discriminate with tapped feed protection
  • Fused spurs
  • Tee-off transformer in-zone
  • Ring main units (RMU)

41
Example HV/EHV ApplicationStub Bus Protection
Bus A
Open disconnector
  • P544 and P546 have two sets of differential CT
    inputs
  • When disconnector open, diff. protection is
    provided for the stub bus only
  • No current vectors transmitted to remote end
  • No diff. intertrip

Bus B
42
Additional Communications ??????? ??????
  • ??? ????????? ???????????? ????- ? ????????????
    ?????
  • ??????????? ????????? ???? ?? ????????? ????? ?
    ???????? ??? ? ?????????????
  • ?????????? ?????? ?????? ?????
  • ?????? ??????????????- ????? ???? ????????????
    ??? ????????? ????????????? ??????
  • ??????????? ?????????????

43
Direct Intertrip
Relay A
Relay B
Transformer Protection
DTT1
Data Message

-

-
44
Permissive Intertrip
F
Relay A
Relay B
Busbar Relay
PIT1
Data Message

-

-
  • Example shows interlocked overcurrent protection
  • Feeder fault seen within busbar zone
  • Remote end trip after set delay for PIT current
    gt Is1

45
8 Programmable Intertrip/ControlCommands, End -
End
A
B
52
52
Single or dual fibre optic comms.
850nm 1300nm 1550nm
or MUX
8 PIT
PSL
PSL
8 PIT
8 Commands from PSL end A - PSL end B Distance
and DEF aided channel schemes Breaker fail
backtrip to upstream CB Force remote end A/R for
successful local A/R SCADA for remote end
substation
46
Best to Keep PSL Simple????? ?????? ?? ?
??????????? ???????? (1)
Z3
Z2
Z1
Send Logic Z1 Trip Logic Rx Z2
Z1
Z2
Z3
Tx Rx
Tx Rx
0
0
100
100


Z1
Z1
Trip
Trip
1
1
Z2
Z2
T2
T2
T2
T2
Z3
Z3
T3
T3
47
PSL ImplicationsPermissive Underreach Scheme (2)
  • Race between relay at D picking up and signal
    send from relay at C resetting, following opening
    of breaker at C
  • If signal send from C resets before relay D
    operates then aided tripping will not occur
  • To prevent this a 100ms delay on drop off of the
    signal send is used in the PSL

A
B
C
D
Fault
21
21
Send
Rx Z2
A
B
C
D
Fault
21
21
Rx Z2
48
PSL ImplicationsP540 Distance Schemes
A
B
87
87
C
D
21
21
  • Better security is offered by a distance scheme
    if permissive signals are routed separately from
    the current differential
  • ie. - 87L channel failure for one line should
    not jeopardise the backup 21 scheme
  • ??? ??????? ???????????? ????? ????????????? ???
    ??????????? ???????? ???????????? ????? ????????
    ?????

49
?????????? ?????????? ??????? ????
  • ??? ?????????????? ????????????? ????????
    ???????? ???????????????
  • Range of addresses for 2 terminal applications
  • 1A, 1B 2A, 2B _ _ _ _ _ 20A, 20B
  • Range of addresses for 3 terminal applications
  • 1A, 1B, 1C 2A, 2B, 2C _ _ _ _ _20A, 20B, 20C

50
Communications Path forTwo Ended Application
Tx
Rx
CH1
Rx
Tx
End B
End A
51
Communications Path forThree Ended Application
Tx
Rx
CH1
CH2
  • Note Full line protection is provided even
    should one communications path fail
  • E.g. For A-B channel fail, C still offers line
    protection and will intertrip to A and B in the
    event of a fault

P540
Rx
Tx
End B
Tx
Rx
Rx
Tx
CH2
CH1
P540
P540
End C
End A
CH1
CH2
Tx
Rx
Rx
Tx
52
Dual Redundant CommunicationChannels Option
CH1
CH2
  • Both channels are active - relays automatically
    select the correct message should one channel
    fail
  • Hot Standby

53
Dual Redundant Communications
Relay A
Relay B
Multiplexer
54
Use of Mixed Comms. Options in Suffix J
  • CH1 and CH2 can now be selected to operate with
    different optical drivers, one 850nm, plus a
    direct fibre connection
  • CORTEC codes H to R

55
????????????? ??????????
  • ???????????? ??? ?????? CH1 and CH2...

Direct Fibre
Relay A
Relay B
?????????????
MUX
56
Be Careful in Triangulated Schemeswith Mixed
Comms Channels...
Tx
Rx
CH1
CH2
1300nm
P540
1300nm
  • End C has 850nm CH1, and 1300nm CH2
  • End A has 850nm CH2, and 1300nm CH1
  • CH1 and CH2 can not be inverted by settings
  • RELAY A AND RELAY C WILL NOT BE THE SAME CORTEC

End B
Rx
Tx
Tx
Rx
Rx
Tx
CH2
CH1
P540
P540
End C
End A
CH1
CH2
Tx
Rx
Rx
Tx
850nm
57
Dual Main Protection - 87L Differential, 21
Distance, Plus Backup
87L Current Differential
Zone 3 Distance
Zone 3 Distance
Zone 1 / 2 Distance
Directional / Non-Directional Overcurrent and
Earth Fault
( Zone 3 can be set forward directional if
required)
58
????????????? ?????????????? ????????
  • ???????? ?????? ??????????? ? ??? ??? ??????
    ??????
  • ????????????? ??? ????????? ? ?????? ??????
    ??????
  • ??? ???? ???????? ??????????????
  • ??? ????????? ????? ????????? ??? ? ??????
    ??????????? ??????????? ?? ????????? ???????
    ??????

59
P543/P544 Distance ProtectionThree
Quadrilateral Zones
(Zone 3 can be set forward directional if
required)
X
Z2
Power swing blocking band
Z1
R
Z3
Directional Line
60
Quadrilateral Characteristic
  • For load avoidance, and better ground fault
    resistive coverage on short lines

jX
Z
L
Load
Z
1
R
F
R
R
Ph/G
61
Generating a Quadrilateral Zone 1 Impedance
Characteristic via Four Phase Comparators
A1 V - IZ B1 INR
IZ
A3 -IZ B3 V IR
A2 V - IR B2 -IZ
?
IR
-IR
A4 -IZ B4 VPOL
Trip criterion - 180 lt ?A - ? B lt 0
62
Phase Comparator Principle
A B
B A
A
A
B
B
B Leads A Operate condition
B Lags A Restrain condition
63
16 Cross Polarising Level Deals with CVT
Transients and Close-up Faults
Fault incidence
CVT error
Faulted phase voltage
16 Synchronous polarising
Polarising voltage
(Before squaring and 90 phase shift)
64
Preventing Zone - 1 OverreachQuadrilateral
Characteristic
Prefault power flow
B
A
I
B
I
A
I
F
R
R
E
E
F
A
B
jX
R
F
B
X
Tilt Down
R
A
65
Preventing UnderreachQuadrilateral Characteristic
Prefault power flow
B
A
I
I
A
B
R
R
F
E
E
A
B
jX
B
X
Tilt Up
R
F
R
A
66
Neutral Current Polarisation of Quadrilateral
Reach-Line
Prefault load flow
E
Z
Z
Z
Z
A
E
I
SA
LA
LB
SB
B
A
I
R
R
F
R
PH E fault
67
Sequence Diagram for Resistive Ground Fault
Z
Z
Z
Z
S1A
L1A
L1B
S1B
I
I
E
E
1A
1B
A
B
Z
Z
Z
Z
S2A
L2A
L2B
S2B
3R
I
I
F
2A
2B
Z
Z
I
F
0A
0B
3
Z
Z
Z
Z
S0A
L0A
L0B
S0B
I
I
0A
0B
?
?



Z
Z
I
I
I
in which case
I
I
0A
0B
0A
0B
F
NA
F
68
Negating Under/Overreach Effects of Infeed
  • During a single phase to ground fault the Neutral
    current is approximately in phase with the fault
    arc current
  • The reactance line of the Earth Quad Elements is
    polarised from Neutral Current
  • Under and overreach effects are minimised
    dynamically

69
Backup Overcurrent Protection51P/51N/67
  • Four stages of directional/non-directional phase
    overcurrent protection
  • Igt1 and Igt2 IDMT or definite time
  • Igt3 and Igt4 definite time (t0, instantaneous)
  • Four stages of directional/non-directional
    earthfault protection
  • INgt1 and INgt2 IDMT or definite time
  • INgt3 and INgt4 definite time (t0, instantaneous)
  • Directional decision polarised from VN or V ,
    allowing use of open delta VTs
  • Igt and INgt elements can be enabled permanently,
    or on channel failure
  • Useful for enabling as Switch on to Fault
    protection

70
Backup Overcurrent Protection51P/51N/67 IDMT
Curves
IEC Curves
IEEE Curves
Operating Time (s)
Operating Time (s)
US MI US VI US EI US I US SI
100
IEC SI IEC VI IEC EI IEC LTS
1000
100
10
10
1
1
0.1
0.1
1
100
10
1
10
100
Current (Multiples of Is)
Current (Multiples of Is)
71
????
Backtrip
  • 2 ??????? ?? ???????
  • ??????? ??????? (15ms)
  • ?????? ?????

Retrip
Trip
BF INIT
From other device
72
??????? ????
73
Overload Protection (1)
  • Overcurrent protection designed for fault
    conditions
  • Thermal replica provides better protection for
    overload
  • Current based
  • Flexible characteristics
  • Single or dual time constant
  • Reset facility
  • Non-volatile

Time
Current
74
Overload Protection (2)Dual ? Characteristic
for Transformers
Trip time (s)
10000
Single characteristic? 120 mins
1000
Dual characteristic
100
Single characteristic? 5 mins
10
1
2
3
4
5
6
Current (multiple of thermal setting)
75
Broken Conductor Protection (1)
  • Majority of system faults are a result of short
    circuits
  • Easily detectable
  • Possibility of open circuit faults exist
  • Difficult to detect with conventional protection

76
Broken Conductor Detection (2)
  • Existing detection methods
  • Combination of under/overcurrent logic
  • Negative phase sequence overcurrent
  • Consider suitability for all load conditions
  • P54 uses a ratio technique
  • I2 / I1 is high for open circuit fault condition
  • Benefit Load conditions have minimal effect

77
VT Supervision (1)
A B C
If and 2f logic
3f on load logic
Alarms Event record Blocking Adaptive setting
  • Alarms
  • Event record
  • Blocking
  • Adaptive
  • setting

VTS
3f on energisation logic
MCB digital input
78
VT Supervision (2)
Loss of all 3 phase voltages under load
P540
I
VTS alarm VTS block LCD Event records

Voltage collapse
79
VT Supervision (3)
Loss of all 3 phase voltages upon line
energisation
P540
VTS alarm VTS block LCD Event records
VTS IgtInhibit

No Voltage
80
Alternative Setting GroupsUse for Switched /
Alternate Feeding
Setting selection inputs
SCADA or PLC
Four groups available
2
1
3
4
81
Integrated Autorecloser with Check Synchronism
(Example P543)
  • Up to four reclose shots
  • First high speed shot can be single pole
  • Three delayed AR shots
  • Selection of elements to initiate or block AR
  • Check synchronism function allows
  • Live line/live bus in synchronism AR
  • Live line/dead bus AR
  • Dead line/live bus AR
  • Safety checking prior to manual CB close
    authorisation

82
Fault Locator (P543 - P546) With Mutual Current
Compensation
10miles
16km
3.8?
16
83
Bay Monitoring
  • CB state/discrepancy monitoring
  • CB condition monitoring
  • Number of Trip operations
  • Sum of broken current Ix (1.0 lt x lt 2.0)
  • CB operating time
  • CB operations during period
  • Condition based maintenance

84
Remote Communications
  • Digital Control Systems
  • Courier
  • Modbus
  • IEC 60870-5-103
  • DNP3.0
  • UCA2.0

85
MiCOM P540 SeriesSummary
  • Per phase basis comparison
  • Differential gives high sensitivity and phase
    selectivity
  • More integration, less panel space, less
    interwiring, lower installation cost
  • Comprehensive backup protection, AR etc
  • No need for panel mounted instruments
  • NO and NC contacts along with graphical PSL allow
    interlocking schemes etc to be configured
  • Self monitoring removes the need for extensive
    periodic injection testing
  • Condition monitoring of CB bay aids maintenance
    scheduling

86
P540 Main ProtectionUnit Protection Relays
Main Protection 21/21G 67/67N 50/51(N) A/R 1.5
CB I/O P541 Current Differential 8/7 P542
Current Differential 16/14 P543 Current
Differential 16/14 P544 Current
Differential 16/14 P545 Current
Differential 24/32 P546 Current
Differential 24/32 P547 Phase
Comparison 10/10
  • Models P543-P546 cover both single and three pole
    tripping applications
  • P541, P542 and P547 cover three pole trip
    applications only
  • P545 and P546 may also be used in conventional
    non-SDH applications to boost digital I/O
    offered, needing no GPS
  • P543 to P546 extra I/O supports 16 timers in PSL

87
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com