Vibrational (Infrared) Spectroscopy - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Vibrational (Infrared) Spectroscopy

Description:

Vibrational (Infrared) Spectroscopy vibrational modes C O equilibrium bond distance re can be changed by applying energy potential well for modified ... – PowerPoint PPT presentation

Number of Views:186
Avg rating:3.0/5.0
Slides: 27
Provided by: chemCcuE8
Category:

less

Transcript and Presenter's Notes

Title: Vibrational (Infrared) Spectroscopy


1
Vibrational (Infrared) Spectroscopy
  • vibrational modes
  • ? C??O ?
  • equilibrium bond distance re can be changed by
  • applying energy
  • potential well for modified (Morse)
    potential
  • classical vibrator well for a diatomic
    molecule
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  • 1. quantized only certain energy levels may
    exist
  • E h?(u 1/2) 
  • u vibrational quantum number
  • w vibrational frequency

2
ex. HCl u(HCl) 2990 cm-1 DCl
u(DCl) 2145 cm-1 ex. u(NO) bond
order NO 2273 cm-1 3 NO 1880
cm-1 2.5 NO- 1365 cm-1 2 NO2- 886
cm-1 1.5 number of vibrational modes a
molecule consists of N atoms, there are 3N
degrees of freedom translation
rotation vibration nonlinear 3 3
3N 6 linear 3 2
3N 5 type of vibrational modes
stretching mode u bending mode
d IR active absorption Raman active
absorption
3
  • frequencies for some commonly encountered groups,
    fragments,
  • and linkages in inorganic and organic molecules

4
  • ex. W(CO)6
    Mn(CO)5Br
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  • compound u(CO) (cm-1)
  • Ti(CO)62- 1740
  • V(CO)6- 1860
  • Cr(CO)6 2000
  • Mn(CO)6 2095
  •  
  • stretching modes of CO and IR frequencies
  • (a) terminal (b) doubly bridging (c) triply
    bridging
  •  
  •  

5
  • some ligands capable of forming linkage isomers
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •   IR spectrum for nujol
  •  
  •  
  •  
  •  
  •  
  •  
  •  

721
1377 1462
2925 2855
6
  • symmetry of normal vibrations
  • ex. CO32- 6 vibrational modes
  • C3(u3a) -1/2u3a 1/2 u3b
  • C3(u3b) -3/2u3a - 1/2 u3b
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

7
  • C3
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •   c 0
  •   C2

8
  • G A1 A2 3E 2A2 E
  • 3 translatory modes E, A2
  • 3 rotational modes A2, E
  • genuine vibrational modes Gg A1 2E A2
  • IR active E, A2 (3 bands)
  • Raman active A1, E (3 bands)
  • particular internal coordinates to normal modes
  • CO bonds
  • E C3 C2 sh S3
    sv
  • G 3 0 1 3 0
    1
  • GCO A1 E in-plane
    stretching

9
  • (i) trans-M(CO)4L2
  • D4h E C4 C2 C2 C2 i S4 sh
    sv sd
  • L 4 0 0 2 0 0
    0 4 2 0
  • OC CO
  • OC CO gt A1g B1g Eu
  • L IR-active Eu
  • (ii) cis-M(CO)4L2
  • CO C2v E C2 s s
  • OC L 4 0 2 2
  • OC L gt 2A1 B1 B2
  • CO IR-active 2A1, B1,
    B2
  •  
  • (iii) mer-M(CO)3L3
  • CO C2v E C2 s s
  • L L 3 1 1
    2
  • OC L gt 2A1 B1
  • OC IR-active 2A1, B1
  •  

10
  • (v) M(CO)4L
  • L D3v E C3 sv
  • 4 1 2
  • gt 2A1 E
  • IR-active 2A1, E
  •  
  • D2v E C3 sv sv
  • L 4 0 2 2
  • gt 2A1 B1 B2
  • IR-active 2A1, B1, B2
  •  
  • (vi) M(CO)3L2
  • L D3h E C3 C2 sh S3
    sv
  • 3 0 1 3 0
    1
  • gt A1 E
  • L IR-active E
  • L Cs E sh
  • 3 1

11
  • number of CO stretching bands in IR spetcrum for
    metal carbonyl compounds

12
number of IR bands of some common geometric
arrangements
13
  • calculation of force constants
  • for diatomic molecule AB harmonic oscillator
  • f m-1 l 0
  • for polyatomic molecule
  • Wilsons method The F and G matrix method
  • FG El 0
  • F matrix of force constant (potential energy)
  • G matrix of masses and spatial relationship of
  • atoms (kinetic energy)
  • E unit matrix 
  • e.g. H2O Gg 2A1 B1
  • 2 O-H distance Dd1, Dd2 A1 B1
  • ?HOH D? A1
  • using projection operator to obtain complete
    set
  • of symmetry coordinates for vibrations
  • A1 S1 D?
  • S2 1/v2(Dd1 Dd2)
  • B1 S3 1/v2(Dd1 - Dd2)

14
  • 2V fd(Dd1)2 fd(Dd2)2 f?(D?)2 2 fdd(Dd1
    Dd2)
  • 2 fd?(Dd1 D?) 2 fd?(Dd2 D?)
  • Dd1 Dd2 D? fd fdd fd?
    Dd1
  • fdd fd fd? Dd2
  • fd? fd? f? D?
  • sf s
  •  
  • relationship between the internal coordinates
    and
  • the symmetry coordinates
  • S U s
  • U matrix
  • Dq 0 0 1
    Dd1
  • Dd1 Dd2 1/v2 1/v2 0
    Dd2
  • Dd1 - Dd2 1/v2 -1/v2 0
    Dq
  • S U s s U S s (U S) SU
  • sfs SFS
  • (SU)f(US) SFS
  • S(UfU)S SFS gt F UfU
  •  

15
  • G matrix G UgU
  • 0 0 1 gd gdd gd?
    0 1/v2 1/v2
  • G 1/v2 1/v2 0 gdd gd
    gd? 0 1/v2 -1/v2
  • 1/v2 -1/v2 0 gd? gd? g?
    1 0 0
  • g33 v2 g13 0
  • v2 g13 g11 g12 0
  • 0 0 g11 - g12
  • g11 mH mO
  • g12 mO cos?
  • g13 -(mO/r) sin?
  • g33 2(mH mO - mO cos?)/r2
  • m reciprocal of the mass
  • 2(mH mO - mO cos?)/r2 -(v2mO/r)
    sin? 0
  • G -(v2mO/r) sin? mH mO
    (1 cos?) 0
  • 0
    0 mH mO (1 - cos?)
  •  
  • for H2O ? 104.3o31 r 0.9580 Ã…
  • 2.332 -0.0893 0
  • G -0.0893 1.0390 0

16
  • elements of the g matrix
  • mi reciprocal mass of the ith atom
  • rij reciprocal of the distance between ith
    and jth

17
  • Raman spectroscopy
  • light of energy less than that required to
  • promote a molecule into an excited electronic
  • state is absorbed by a molecule,
  • a virtual excited state is created
  • virtual state is very short lifetime, the
    majority
  • of the light is re-emitted over 360oC, this is
  • called Rayleigh scattering
  • C. V. Raman found that the energy of a small
  • proportion of re-emitted light differs from the
  • incident radiation by energy gaps that
  • correspond to some of the vibrational modes
  • Stokes lines
  • anti-Stokes line

18
  • schematic representation of Raman spectrometer
  • selection rules for vibrational transitions
  • a fundamental will be infrared active if the
  • normal mode which is excited belongs to the
  • same representation as any one or several of
  • the Cartesian coordinates
  • a fundamental will be Raman active if the
  • normal mode involved belongs to the same
  • representation as one or more of the
  • components of the polarizability tensor of the
  • molecule
  • the exclusion rule in centrosymmetric
    molecules,

19
  • ex. Na2MoO4 dissolved in HCl exhibits Raman
  • peaks at 964, 925, 392, 311, 246, 219 cm-1
  • 925, 311 cm-1 being polarized
  • what can be deduced from the spectrum?
  • no n(MoH) and n(OH) bands
  • only MCl and MO likely exist
  • 964, 925 cm-1 MoO stretching bands
  • 392 cm-1 MoO bending mode
  • 311, 246, 219 cm-1
  • MoCl
    stretching modes
  • possible product

20
  • normal vibrational modes for common structures

21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com