Title: NUMERICAL METHODS ?????????????????
1NUMERICAL METHODS?????????????????
- Suthida Chaichomchuen
- std_at_kmitnb.ac.th
2COURSE DESCRIPTION
?????????????????? ??????????????????????????????
????????????????? ? ????????????????????
??????????????????????????????????????????????????
?????????? ??????????????????????????????????
?????????????????????????????????????????
????????????????? ???????????????????????????
??????????????????????????????????????????????
3GENERAL OBJECTIVE
?????????????????????????????????????????????????
???????????????? ????????????????????????????? ?
???????????????????????????? ?????????????????????
???????????????????????????????
??????????????????????????????????????????????????
??????
4BEHAVIORAL OBJECTIVES
- ???????????????????????????????????
- ??????????????????????????????????????????????????
??? ? ??????????????????????? - ??????????????????????????????????????????????????
???????????????????????????????? - ???????????????????????????????????????????????
5BEHAVIORAL OBJECTIVES
- ????????????????????????????????????????
- ???????????????????????????????????????
- ?????????????????????????????????? ? ????????????
???????????????? - ????????????????????????????????????????
6BEHAVIORAL OBJECTIVES
- ??????????????????????????????????????????????????
??????????????? ? ???
7BRIEF CONTEXT
- Major Sources of Errors in Numerical Methods
- Truncation Error
- Round-off Error
- Numbers on Computer
8BRIEF CONTEXT
- Polynomial Interpolation
- Linear Interpolation
- Lagrange Interpolation Formula
- Newton Forward and Backward Interpolations on
Equispaced Points - Newton Interpolation on Nonuniformly Spaced Points
9BRIEF CONTEXT
- Polynomial Interpolation
- Interpolation with Chebychev Roots
- Hermite Interpolation Polynomials
- Two-Dimensional Interpolation
- Extrapolation
10BRIEF CONTEXT
- Solution of Nonlinear Equations
- Bisection Method
- False Position Method and Modified False Position
Method - Newtons Method
11BRIEF CONTEXT
- Solution of Nonlinear Equations
- Secant Method
- Successive Substitution Method
- Bairstows Method
12BRIEF CONTEXT
- Numerical Integration
- Trapezoidal Rule
- Simpsons 1/3 Rule
- Simpsons 3/8 Rule
- Newton-Cotes Formulas
13BRIEF CONTEXT
- Numerical Integration
- Gauss Quadratures
- Numerical Integration with Infinite Limits or
Singularities - Numerical Integration in a Two-Dimensional Domain
14BRIEF CONTEXT
- Numerical Differentiation
- Using Taylor Expansion
- A Generic Algorithm to Derive a Difference
Approximation - Using Difference Operators
- Using Differentiation of Newton Interpolation
Polynomials - Difference Approximations of Partial Derivatives
15BRIEF CONTEXT
- Numerical Linear Algebra
- Gauss and Gauss-Jordan Elimination for Simple
Ideal Problems - Pivoting and Standard Gauss Elimination
- Unsolvable Problems
- Matrices and Vectors
16BRIEF CONTEXT
- Numerical Linear Algebra
- Inversion of a Matrix
- LU Decomposition
- Determinant
- Ill-Conditioned Problems
- Solution of M Equations with N Unknowns
17BRIEF CONTEXT
- Computations of Matrix Eigenvalues
- Eigenvalues
- Eigenvectors
18REFERENCE BOOKS
- Applied Numerical Methods in C
- Numerical Methods for Engineers
- ??????????????????????????????????
19MARKS
- Final Exam. 40
- Mid-term Exam. 30
- Test/Quiz Exam. 15
- Homework 10
- Participation 5
20GRADE
T-SCORE
21?????????????????? ????????????? . . .