Tools and Application of Timed Automata UPPAAL & Optimal Scheduling - PowerPoint PPT Presentation

1 / 35
About This Presentation
Title:

Tools and Application of Timed Automata UPPAAL & Optimal Scheduling

Description:

Tools and Application of Timed Automata UPPAAL & Optimal Scheduling Kim G. Larsen kgl_at_cs.auc.dk Contributors UPPAAL Gerd Behrmann Wang Yi Paul Pettersson Johan ... – PowerPoint PPT presentation

Number of Views:342
Avg rating:3.0/5.0
Slides: 36
Provided by: ametistCs
Category:

less

Transcript and Presenter's Notes

Title: Tools and Application of Timed Automata UPPAAL & Optimal Scheduling


1
Tools and Application of Timed AutomataUPPAAL
Optimal Scheduling
  • Kim G. Larsen
  • kgl_at_cs.auc.dk

2
Contributors
  • CUPPAAL
  • Thomas Hune
  • Jakob I Rasmussen
  • Ansgar Fehnker
  • Judi Romijn
  • Frits Vaandrager
  • Ed Brinksma
  • Patricia Bouyer
  • CASE STUDIES
  • Thomas Hune
  • Gerd Behrmann
  • Arne Skou
  • Anders Brødløs
  • UPPAAL
  • Gerd Behrmann
  • Wang Yi
  • Paul Pettersson
  • Johan Bengtsson
  • Fredrik Larsson
  • Alexandre David
  • Leonid Mokrushin
  • Brian Nielsen

3
CUPPAAL KRONOS
www.uppaal.com
4
CUPPAAL
Priced
CUPPAAL
www.uppaal.com
5
Scheduling Problem
  • Scheduling/Planning Domain
  • A number of objects
  • instances of different object types
  • individual states ? global state
  • A number of actions on objects
  • required precondition on objects ( state
    condition)
  • resulting effect ( state transformation)
  • duration / cost ( time / energy / money / ..)
  • Problem
  • compute an (optimal) plan/schedule that solves
    the problem.

6
Rush Hour
Your CAR
OBJECTIVE Get your CAR out
EXIT
7
Rush Hour
8
Rush Hour
9
Jobshop Scheduling
TACAS2001
NP-hard Simulated annealing Shiffted
bottleneck Branch-and-Bound Gentic Algorithms
Problem compute the minimal MAKESPAN
10
Jobshop in UPPAAL
11
Experiments
B--B algorithm running for 60 sec.
j10
m5
j15
j20
j10
m10
j15
Lawrence Job Shop Problems
12
Task Graph SchedulingOptimal Static Task
Scheduling
  • Task PP1,.., Pm
  • Machines MM1,..,Mn
  • Duration D (PM) ! N1
  • lt p.o. on P (pred.)
  • A task can be executed only if all predecessors
    have completed
  • Each machine can process at most one task at a
    time
  • Task cannot be preempted.

P2
P1
2,3
16,10
P6
P3
P4
6,6
10,16
2,3
P7
P5
2,2
8,2
M M1,M2
13
Task Graph SchedulingOptimal Static Task
Scheduling
  • Task PP1,.., Pm
  • Machines MM1,..,Mn
  • Duration D (PM) ! N1
  • lt p.o. on P (pred.)

P2
P1
2,3
16,10
P6
P3
P4
6,6
10,16
2,3
P7
P5
2,2
8,2
M M1,M2
14
Experimental Results
Abdeddaïm, Kerbaa, Maler
15
Task Graph SchedulingPower-Optimal Static Task
Scheduling
  • Task PP1,.., Pm
  • Machines MM1,..,Mn
  • Duration D (PM) ! N1
  • lt p.o. on P (pred.)
  • Energy C M ! N

P2
P1
2,3
16,10
0
P6
P3
P4
6,6
10,16
2,3
4
P7
P5
2,2
8,2
C(M1)4 C(M2)3
16
Priced Timed Automata Optimal Scheduling
Behrmann, Fehnker, et all (HSCC01)
Alur, Torre, Pappas (HSCC01)
cost1
cost2
cost0
xlt3
xlt3
cost4
ygt2, xlt2
c
a
x0
b
Problem Find the minimum cost of reaching
location c
  • Timed Automata Costs on transitions and
    locations.
  • Cost of performing transition Transition cost.
  • Cost of performing delay d ( d x Location
    cost).

17
Example Aircraft Landing
Planes have to keep separation distance to avoid
turbulences caused by preceding planes
Runway
18
Example Aircraft Landing
x lt 5
x gt 4
x5
4 earliest landing time 5 target time 9 latest
time 3 cost rate for being early 1 cost rate
for being late 2 fixed cost for being late
land!
cost2
x lt 5
x lt 9
cost3
cost1
x5
land!
Planes have to keep separation distance to avoid
turbulences caused by preceding planes
Runway
19
Zones
y
Operations
Z
x
20
Priced Zone
CAV01
y
Z
2
-1
4
x
21
Symbolic BB Algorithm
CAV01
22
Symbolic BB Algorithm
CAV01
Linear Programming Problems
23
Aircraft Landing
CAV01
Source of examples Baesley et al2000
24
Aircraft LandingUsing MCF/Netsimplex
J.I. Rasmussen et al similar for Priced
Task Graph
25
Case-Studies Controllers
  • Gearbox Controller TACAS98
  • Bang Olufsen Power Controller
    RTPS99,FTRTFT2k
  • SIDMAR Steel Production Plant RTCSA99, DSVV2k
  • Real-Time RCX Control-Programs ECRTS2k
  • Experimental Batch Plant (2000)
  • RCX Production Cell (2000)
  • Terma, Memory Management for Radar (2002)
  • Analog Devices, Dynamic Voltage Scaling
    Strategies (2003)

26
Case Studies Protocols
  • Philips Audio Protocol HS95, CAV95, RTSS95,
    CAV96
  • Collision-Avoidance Protocol SPIN95
  • Bounded Retransmission Protocol TACAS97
  • Bang Olufsen Audio/Video Protocol RTSS97
  • TDMA Protocol PRFTS97
  • Lip-Synchronization Protocol FMICS97
  • Multimedia Streams DSVIS98
  • ATM ABR Protocol CAV99
  • ABB Fieldbus Protocol ECRTS2k
  • IEEE 1394 Firewire Root Contention (2000)
  • Leader Election Algorithm in Ad-Hoc Network
    posed by Leslie Lamport 2003

27
Conclusion
www.uppaal.com
28
Steel Production Plant
Crane A
  • A. Fehnker
  • Hune, Larsen, Pettersson
  • Case study of Esprit-LTRproject 26270 VHS
  • Physical plant of SIDMARlocated in Gent,
    Belgium.
  • Part between blast furnace and hot rolling
    mill.
  • Objective model the plant, obtain schedule
    and control program for plant.

Machine 2
Machine 3
Machine 1
Lane 1
Machine 4
Machine 5
Lane 2
Buffer
Crane B
Storage Place
Continuos Casting Machine
29
Steel Production Plant
Crane A
Machine 2
Machine 3
Input sequence of steel loads (pigs).
Machine 1
Lane 1
Machine 4
Machine 5
Lane 2
Load follows Recipe to become certain quality,
e.g start T1_at_10 T2_at_20 T3_at_10 T2_at_10 end
within 120.
Buffer
Crane B
Storage Place
Continuos Casting Machine
Output sequence of higher quality steel.
30
Steel Production Plant
Crane A
Machine 2
Machine 3
Input sequence of steel loads (pigs).
Machine 1
_at_10
_at_20
_at_10
2
2
2
Lane 1
Machine 4
Machine 5
5
_at_10
Lane 2
Load follows Recipe to become certain quality,
e.g start T1_at_10 T2_at_20 T3_at_10 T2_at_10 end
within 120.
6
Buffer
Crane B
Storage Place
?107
_at_40
Continuos Casting Machine
Output sequence of higher quality steel.
31
Steel Production Plant
Crane A
Machine 2
Machine 3
Input sequence of steel loads (pigs).
Machine 1
_at_10
_at_20
_at_10
2
2
2
Lane 1
Machine 4
Machine 5
15
_at_10
Lane 2
Load follows Recipe to obtain certain quality,
e.g start T1_at_10 T2_at_20 T3_at_10 T2_at_10 end
within 120.
16
Buffer
Crane B
Storage Place
?127
_at_40
Continuos Casting Machine
Output sequence of higher quality steel.
32
A single load (part of)
Crane B
33
Experiment
  • BFS breadth-first search, DFS depth-first
    search, BSH bit-state hashing,
  • - requires gt2h (on 450MHz Pentium III), gt256
    MB, or suitable hash-table size was not found.
  • System size 2n5 automata and 3n3 clocks, if
    n35 75 automata and 108 clocks.
  • Schedule generated for n60 on Sun Ultra with
    2x300MHz with 1024MB in 2257s .

34
LEGO Plant Model
crane a
m1
m2
m3
  • LEGO RCX Mindstorms.
  • Local controllers with control programs.
  • IR protocol for remote invocation of programs.
  • Central controller.

m4
m5
crane b
buffer
storage
central controller
casting
Synthesis
35
LEGO Plant Model
Belt/Machine Unit.
Write a Comment
User Comments (0)
About PowerShow.com