Michigan.do - PowerPoint PPT Presentation

About This Presentation
Title:

Michigan.do

Description:

Variable | Obs Mean Std. Dev. Min Max. smoked | 26441 .1950002 .3962083 0 1 - mi = 0, hike = 1 ... Std. Err. t P |t| [95% Conf. Interval] ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 11
Provided by: a1589
Learn more at: https://www3.nd.edu
Category:
Tags: michigan | std

less

Transcript and Presenter's Notes

Title: Michigan.do


1
Michigan.do
2
  • . construct new variables
  • . gen mistate26
  • . michigan dummy
  • . gen hikemonthgt33
  • . treatment period dummy
  • . gen treatmenthikemi

3
  • . get means of smoking rates for the 2x2 box
  • . sort mi hike
  • . by mi hike sum smoked

4
  • . by mi hike sum smoked
  • --------------------------------------------------
    -----------------------------
  • -gt mi 0, hike 0
  • Variable Obs Mean Std. Dev.
    Min Max
  • -------------------------------------------------
    --------------------
  • smoked 26441 .1950002 .3962083
    0 1
  • --------------------------------------------------
    -----------------------------
  • -gt mi 0, hike 1
  • Variable Obs Mean Std. Dev.
    Min Max
  • -------------------------------------------------
    --------------------
  • smoked 18852 .1827923 .3865064
    0 1
  • --------------------------------------------------
    -----------------------------
  • -gt mi 1, hike 0
  • Variable Obs Mean Std. Dev.
    Min Max
  • -------------------------------------------------
    --------------------
  • smoked 17790 .1957279 .3967712
    0 1
  • --------------------------------------------------
    -----------------------------
  • -gt mi 1, hike 1
  • Variable Obs Mean Std. Dev.
    Min Max

5
Smoking Rates
6
  • . now run the regression
  • . reg smoked mi hike treatment
  • Source SS df MS
    Number of obs 76026
  • -------------------------------------------
    F( 3, 76022) 8.59
  • Model 3.95288903 3 1.31762968
    Prob gt F 0.0000
  • Residual 11663.5888 76022 .153423862
    R-squared 0.0003
  • -------------------------------------------
    Adj R-squared 0.0003
  • Total 11667.5417 76025 .153469803
    Root MSE .39169
  • --------------------------------------------------
    ----------------------------
  • smoked Coef. Std. Err. t
    Pgtt 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • mi .0007277 .0037982 0.19
    0.848 -.0067168 .0081723
  • hike -.0122079 .0037337 -3.27
    0.001 -.019526 -.0048898
  • treatment -.0051997 .0058668 -0.89
    0.375 -.0166985 .0062991
  • _cons .1950002 .0024088 80.95
    0.000 .1902789 .1997215
  • --------------------------------------------------
    ----------------------------

Notice the estimate for treatment is
arithmetically Identical to the number from the
2x2 box
7
  • . now control for observed characteristics
  • . generate dummy variables to control for race,
    parity, education and age
  • . xi i.age i.mrace3 i.meduc6 i.ageg
  • . add these variables to the model
  • . reg smoked mi hike treatment _I

8
  • . reg smoked mi hike treatment _I
  • Source SS df MS
    Number of obs 76026
  • -------------------------------------------
    F( 15, 76010) 474.06
  • Model 998.136229 15 66.5424153
    Prob gt F 0.0000
  • Residual 10669.4055 76010 .140368445
    R-squared 0.0855
  • -------------------------------------------
    Adj R-squared 0.0854
  • Total 11667.5417 76025 .153469803
    Root MSE .37466
  • --------------------------------------------------
    ----------------------------
  • smoked Coef. Std. Err. t
    Pgtt 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • mi -.0039841 .0036501 -1.09
    0.275 -.0111382 .00317
  • hike -.0030636 .0035745 -0.86
    0.391 -.0100696 .0039424
  • treatment -.0051552 .0056122 -0.92
    0.358 -.0161551 .0058447
  • _Iageg_2 .105199 .0052283 20.12
    0.000 .0949516 .1154464
  • Delete some
    results
  • _Imeduc6_6 .0156193 .0145937 1.07
    0.284 -.0129844 .044223
  • _cons .1476714 .0092008 16.05
    0.000 .1296378 .165705
  • --------------------------------------------------
    ----------------------------

9
  • . now control for all time periods and all
    states
  • . need to define time and state dummies
  • . in the regression, drop the mi and hike
    variables
  • . xi i.age i.mrace3 i.meduc6 i.ageg i.state
    i.month
  • . reg smoked treatment _I

10
  • . reg smoked treatment _I
  • Source SS df MS
    Number of obs 76026
  • -------------------------------------------
    F( 70, 75955) 102.48
  • Model 1006.80931 70 14.3829901
    Prob gt F 0.0000
  • Residual 10660.7324 75955 .140355901
    R-squared 0.0863
  • -------------------------------------------
    Adj R-squared 0.0854
  • Total 11667.5417 76025 .153469803
    Root MSE .37464
  • --------------------------------------------------
    ----------------------------
  • smoked Coef. Std. Err. t
    Pgtt 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • treatment -.0053194 .0056134 -0.95
    0.343 -.0163216 .0056828
  • _Iageg_2 .1051191 .0052311 20.10
    0.000 .0948663 .115372
  • Delete some results
  • _Istate_26 -.0046835 .0051651 -0.91
    0.365 -.0148071 .0054402
  • _Istate_42 -.0009752 .0045039 -0.22
    0.829 -.0098028 .0078525
  • _Imonth_2 .0273311 .0136851 2.00
    0.046 .0005083 .0541538
  • Delete some results
  • _Imonth_3 .0305209 .014018 2.18
    0.029 .0030457 .0579961
  • _Imonth_56 .009216 .0148571 0.62
    0.535 -.0199038 .0383358
Write a Comment
User Comments (0)
About PowerShow.com