Isocharts: Stretchdriven Mesh Parameterization using Spectral Analysis - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

Isocharts: Stretchdriven Mesh Parameterization using Spectral Analysis

Description:

Isocharts: Stretchdriven Mesh Parameterization using Spectral Analysis – PowerPoint PPT presentation

Number of Views:94
Avg rating:3.0/5.0
Slides: 37
Provided by: hugues
Category:

less

Transcript and Presenter's Notes

Title: Isocharts: Stretchdriven Mesh Parameterization using Spectral Analysis


1
Iso-charts Stretch-driven Mesh Parameterization
using Spectral Analysis
Kun Zhou, John Snyder, Baining Guo,
Heung-Yeung Shum Microsoft Research
Asia Microsoft Research
2
Parameterizing Arbitrary 3D Meshes
Chartification
Texture Atlas
3
Goals of Mesh Parameterization
4
Iso-chart Algorithm Overview
Input 3D mesh, user-specified stretch threshold
  • Surface spectral analysis
  • Stretch optimization
  • Surface spectral clustering
  • Optimize chart boundaries
  • Recursively split charts
  • until stretch criterion is met

Output atlas having large charts with bounded
stretch
5
IsoMap
Tenenbaum et al, 2000
Data points in high dimensional space
Data points in low dimensional space
Neighborhood graph
Analyze geodesic distance to uncover nonlinear
manifold structure
6
Surface Spectral Analysis
7
Surface Spectral Analysis
Construct matrix of squared geodesic distances DN
8
Surface Spectral Analysis
Perform centering and normalization to DN
9
Surface Spectral Analysis
Perform eigenanalysis on BN to get embedding
coords yi
10
GDD-minimizing Parameterization
Zigelman et al, 2002
Parametric coordinates
Texture mapping
  • Produces triangle flips
  • Only handles single-chart (disk-topology) models

11
Stretch-minimizing Parameterization
Sander et al, 2001
2D texture domain
surface in 3D
12
Stretch Optimization
Sander01, L2 1.04, 222s
Sander02, L2 1.03, 39s
IsoMap, L2 1.04, 2s
IsoMapOptimization, L2 1.03, 6s
13
Surface Spectral Clustering
Analysis
14
Surface Spectral Clustering
  • Get top n ( 3) eigenvalues/eigenvectors
  • where n maximizes
  • For each vertex
  • compute n-dimensional embedding coordinates
  • For each of the n dimensions
  • find two extreme vertices
  • set them as representatives
  • Remove representatives that are too close
  • Grow charts from representatives

15
Surface Spectral Clustering
n4
n3
16
Surface Spectral Clustering
17
Optimizing Partition Boundaries
  • create nonjaggy cut, through crease edges
    Katz2003
  • minimize embedding distortion

18
Optimizing Partition Boundaries
Angular capacity alone Katz et al, 2003
Distortion capacity alone
Combined capacity
19
Special Spectral Clustering
  • Avoid excessive partition for simple shapes
  • Special clustering for tabular shapes

n 2 1st dimension
n 2 2nd dimension
n 2 3rd dimension
n gt 2
20
Signal-Specialized Atlas Creation
  • Signal-specialized parameterization Sander02

geometry stretch
signal stretch
  • Combine geodesic and signal distances

21
Implementation Details
  • Acceleration
  • Landmark IsoMap Silva et al, 2003
  • Only compute the top 10 eigenvalues
  • Merge small charts as a post-process

22
Partition Process
23
Results
19 charts, L21.03, running time 98s, 97k faces
24
Results
38 charts, L21.07, running time 287s, 150k faces
25
Results
23 charts, L21.06, running time 162s, 112k faces
26
Results
11 charts, L21.01, running time 4s, 10k faces
27
Results
11 charts, L21.02, running time 90s, 90k faces
28
Results
6 charts, L21.03, running time 17s, 40k faces
29
Geometry Remeshing
30
Remeshing Comparison
Sander03, 79.5dB
Iso-chart, 82.9dB
Original model
31
LOD Generation for Texture Synthesis
32x32
64x64
128x128
32
Texture Synthesis Results
33
Texture Synthesis Results
34
Signal-Specialized Atlas Creation
Original
Geometry stretch SAE 20.8
Signal param SAE 17.9
Signal chartparam SAE 16.5
35
Signal-Specialized Atlas Creation
Original
Geometry stretch SAE 18.7
Signal param SAE 11.5
Signal chartparam SAE 9.7
36
Conclusion
  • Iso-chart a fast and effective atlas generator
  • Surface spectral analysis
  • for parameterization
  • provides good starting point for stretch
    minimization
  • for chartification
  • separates global features well
  • optimizes chart boundaries
  • yields special partition for tubular shapes
  • Signal-specialized atlas creation
Write a Comment
User Comments (0)
About PowerShow.com