Title: Boundary Partitions in Trees and Dimers
1Boundary Partitions in Trees and Dimers
(Connection probabilities in multichordal SLE2,
SLE4, and SLE8)
- Richard W. Kenyon and David B. Wilson
University of British Columbia
Microsoft Research
2Multichordal SLE
Crossing probabilities
Percolation -- Cardy 92
Smirnov 01
Critical Ising Arguin Saint-Aubin 02
Bichordal SLE? -- Bauer, Bernard, Kytölä 05
Trichordal SLE6, multichordal SLE? Dubédat 05
Covariant measure for parallel crossing --
Kozdron Lawler 06
Multichordal SLE2, SLE4, SLE8, double-dimer paths
Kenyon W 06
SLE4 characterization of discrete Guassian free
field Schramm Sheffield 06
31
3
5
4
2
Spanning forest rooted at 1,2,3
Spanning tree
Planar graph Special vertices called nodes on
outer face Nodes numbered in counterclockwise
order along outer face
Kirchoff matrix (negative Laplacian)
Matrix-tree theorem
41
3
1
3
1
3
5
4
5
4
5
4
2
2
2
1
3
1
3
1
3
5
4
5
4
5
4
2
2
2
5Carroll-Speyer groves
61
3
5
4
2
Goal compute the probability distribution of
partition from random grove
7Noncrossing (planar) partitions
4
4
1
3
1
3
2
2
4
1
3
2
8Uniformly random grove
9Multichordal loop-erased random walk
10Peano curves surrounding trees
11Double-dimer configuration
12Noncrossing (planar) pairings
4
4
1
3
1
3
2
2
4
1
3
2
13Double-dimer model in upper half plane with nodes
at integers
14Electric network
(negative of) Dirichlet-to-Neumann matrix
151
3
5
4
2
161
3
5
4
2
0
17(No Transcript)
18(No Transcript)
19Grove partition probabilities
20(No Transcript)
21(No Transcript)
22Double-dimer pairing probabilities
23(No Transcript)
24Planar partitions planar pairings
25Planar partitions planar pairings
26Bilinear form onplanar partitions / planar
pairings
27Meander Matrix
Ko Smolinsky determine when matrix is singular
Gram Matrix of Temperley-Lieb Algebra
Di Francesco, Golinelli, Guitter diagonalize
matrix
28Bilinear form onplanar partitions / planar
pairings
29(No Transcript)
30(No Transcript)
31These equivalences are enough to compute any
column!
32(No Transcript)
33Computing column ?
By induction find equivalent linear combination
when item n deleted from ?.
If n is a part of ?, use rule for adjoining new
part.
Otherwise, n is in same part as some other item
j, use splitting rule.
n
n
Now induct on parts that cross part containing
j n
Use crossing rule with part closest to j
j
34Grove partition probabilities
35Dual electric network dual partition
Planar graph
Dual graph
Grove
Dual grove
36(No Transcript)
37Curtis-Ingerman-Morrow formula
1
8
2
7
3
6
4
5
Fomin gives another version of this formula, with
combinatorial proof
38Pfaffian formula
5
6
1
4
2
3
39Caroll-Speyer groves
40Caroll-Speyer groves
41Assume nodes alternate black/white
42(No Transcript)
43(No Transcript)
44(No Transcript)
45arXivmath.PR/0608422