Title: Carlos E. CrespoHernndez
1Excess Energy Flow in DNA Bench and Computer
Experiments Working in Unison
- Carlos E. Crespo-Hernández
- Department of Chemistry
- Email carlos.crespo_at_case.edu
- Ohio Supercomputer Center
- Columbus, Ohio
- April 4, 2008
2Acknowledgement
- Prof. Bern Kohler and Group Members
- National Institute of Health (R01-GM64563)
- Prof. Terry Gustafson and the Center for Chemical
and Biophysical Dynamics, The Ohio State
University - Ohio Supercomputer Center
- Case Western Reserve University
- NSF-ACES Program and NSF-MRI Grant CHE0443570
3Ohio Supercomputer Center Allocations (since 2005)
- Software
- Gaussian 03 2CPUs in parallel, 10-12 hrs,
150-200 RUs - GROMACS 4 CPUs in parallel (scaling 99), 150
ns trajectories _at_ 0.767 hrs/ns, - 50 RUs 100 RUs for free energy simulations
100 RUs - Storage Needs
- For the systems and trajectories we are
currently running we use 200MB/ns or 100GB of
storage space (before compressed) scratch
space. - Future larger model systems would necessitate
larger scale simulations 8CPus in parallel
(scaling 81) at 2.4 hrs/ns.
Publications
1. Close, M. D. Crespo-Hernández, C. E. Gorb,
L. Leszczynski, J. J. Phys. Chem. A 2005, 109,
9279. 2. Close, M. D. Crespo-Hernández, C. E.
Gorb, L. Leszczynski, J. J. Phys. Chem. A 2006,
110, 7485. 3. Crespo-Hernández, C. E. Close, M.
D. Gorb, L. Leszczynski, J. J. Phys. Chem. B
2007, 111, 5386. 4. Crespo-Hernández, C. E.
Marai, C. N. J. AIP Conference Proceedings 2007,
963, 607. 5. Law, Y. K. Azadi, J.
Crespo-Hernández, C. E. Olmon, E. Kohler, B.
Biophysical J. 2008, in press. 6. Close, M. D.
Crespo-Hernández, C. E. Gorb, L. Leszczynski,
J. J. Phys. Chem. A 2008, in press. 7.
Crespo-Hernández, C. E. Burdzinski, G. Arce, R.
J. Phys. Chem. A 2008, submitted.
4Ultrafast Excited State Dynamics of Nucleic Acids
5S1 Lifetimes for Nucleosides
DNA
RNA
Pecourt, J.-M.L. Peon, J. Kohler, B. J. Am.
Chem. Soc. 2001, 123, 10370. Crespo-Hernández,
C.E. Cohen, B. Hare, P. Kohler, B. Chem. Rev.,
2004, 104, 1977. Cohen, B. Crespo-Hernández,
C.E. Kohler, B. J. Chem. Soc., Faraday Discuss.
2004, 127, 137.
6Role of Conical Intersections in the
Radiationless Decay of DNA Monomers Cytosine
Conical intersections are a likely mechanism for
the ultrafast lifetimes of cytosine and the other
DNA bases.
Pecourt, J.-M.L. Peon, J. Kohler, B. J. Am.
Chem. Soc. 2001, 123, 10370. Merchán, M.
Serrano-Andrés, L. J. Am. Chem. Soc., 2003, 125,
8108.
7Nucleic Acid Multimers Photophysics The Role of
Base Stacking and Base Pairing
8Effect of Base Stacking Interactions
Dinucleotides stack ? unstack Nucleotides
unstack
9Electronic Coupling versus Interchromophoric
Distance
TD-DFT/B3LYP/6-311G(d,p) Calculations of A-Form
ApA
Crespo-Hernández, C.E. Marai, C.N.J. AIP
Conference Proceedings 2007, 963, 607.
R
AA AMP
?E 0.2 eV
10Reversible Redox Potentials of DNA Nucleosides
Crespo-Hernández, C.E. Close, M. D. Gorb, L.
Leszczynski J. Phys. Chem. B 2007, 111, 5386.
11Charge Transfer Character of the Excimer/Exciplex
Tomohisa, T. Su, C. de la Harpe, K
Crespo-Hernández, C.E. Kohler, B. Proc. Natl.
Acad. Sci. USA 2008, accepted.
?G ? Eox - Ered ? IP - EA
The decay rates of the long-lived states increase
with increasing driving force for charge
recombination as expected in the Marcus inverted
region.
12Role of the Driving Force for Charge Separation
Crespo-Hernández, C.E. Cohen, B. Kohler, B.
Nature 2005, 436, 1141. Crespo-Hernández, C. E.
de la Harpe, K. Kohler, B. J. Am. Chem. Soc.
2008, submitted.
?G(GC) gt ?G(AT) gt ?G(IC)
13Excited State Dynamics and DNA Photochemistry Mak
ing Connections
Cadet, J. Vigny, P. In Bioorganic
Photochemistry Morrison, H., Ed. Wiley New
York, 1990 Vol.1, p 1.
14Thymine Dimerization in DNA is an Ultrafast
Reaction
Crespo-Hernández, C.E. Cohen, B. Kohler, B.
Nature 2005, 436, 1141. Schreier, W.J. Schrader,
T.E. Koller, F.O. Gilch, P. Crespo-Hernández,
C.E. Swaminathan, V.N. Carell, T. Zinth, W.
Kohler, B. Science 2007, 315, 625.
Steady State IR
fs-Time-Resolved IR
fs-Transient Absorption
? 740 ? 12 fs
15Prediction of TltgtT Yields from MD Simulations
Law, Y.K. Azadi, J. Crespo-Hernández, C.E.
Cohen, B. Kohler, B. Biophysical J. 2008, in
press.
Water/EtOH YieldExp. YieldMD (x
102) ---------------------------------------------
-------------- 0 1.6
0.3 1.7 40
1.1 0.1 1.3 50
0.7 0.2 0.6
Hypothesis ground-state conformation at the
instant when dTpT absorbs light controls the
photodimer yield.
16Conclusions
Our combined experimental and computational
studies have shown
- Base stacking controls the excited state dynamics
on single and double stranded DNA, forming new
long-lived singlet excited states not observed in
the monomers. - The driving force for charge separation and
charge recombination in the DNA base stacks
modulates the dynamics of the long-lived singlet
state. - The major DNA photoproduct, the thymine
photodimer, is formed in less than 1ps in
thymine-thymine base stacks and the ground state
conformation controls whether the photodimer
reaction takes place or not. - Theoretical calculations have been essential for
the visualization of the molecular processes and
the elucidation of specific mechanisms of
nonradiative deactivation of the excited states
in DNA.
17(No Transcript)
18Conceptual Pump-Probe Transient Absorption
Experiment
probe
pump
DOD
0-
Delay / fs
19Femtosecond Pump-Probe Transient Absorption Setup
Beam Blocker
20Ultrafast Deactivation Channel for Thymine
Dimerization
Boggio-Pasqua, M. Groenhof, G. Schäfer, L.V.
Grubmüller, H. Robb, M.A. J. Am. Chem. Soc.
2007, 129, 10996.
21Temperature Dependence of the Decays of PolyA and
AMP
Crespo-Hernández, C.E. Kohler, B. J. Phys. Chem.
B 2004, 108, 11182.
Excimer State is Localized between two Stacked
Bases.
PolyA
AMP