Title: HighThroughput Oligo Design and Microarray Data Analysis
1High-Throughput Oligo Design and Microarray Data
Analysis
Xiaowei Wang Department of Molecular
Biology Massachusetts General Hospital, Boston
2Talk Summary
- Real-Time PCR Primer Design
- siRNA Design
- Microarray Data Analyses For NF-?B Pathway
- Mammalian Gene Association Network
3Primer Design Problems
- Current primer design programs do not consider
primer specificity. - Researchers need to design their own primers.
- 60 primer design success rate using SYBR
Green. - Need to redesign primers, wasting time and money.
4Why Using PrimerBank?
User comment on PrimerBank I demonstrated
accessing your database during a workshop I
think the audience got the message about which
software tool they should use to design assays
... i.e., none at all
- Benefits
- Pre-designed primers for 40,000 human and mouse
genes - 99 design success rate (validated over 1000
primers) - Free to the public
5Primer Design Criteria
Specificity No repetitive 15-mer low BLAST
score highly unique 3 end reasonable sequence
complexity, etc. Sensitivity No secondary
structure no primer dimer, etc. Uniformity Simi
lar Tm, GC content, primer length, amplicon
length, etc.
6Real-Time PCR of cytochrome P450 genes
b) Melting Curves
a) Amplification Plots
7Gel Electrophoresis of The PCR Products
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
500 bp
350 bp
275 bp
225 bp
175 bp
125 bp
8PrimerBank Home Page
http//pga.mgh.harvard.edu/primerbank/
9(No Transcript)
10Statistics for PrimerBank Usage
Total queries 34,201 Unique Users 2,332
11Talk Summary
- Real-Time PCR Primer Design
- siRNA Design
- Microarray Data Analyses For NF-?B Pathway
- Mammalian Gene Association Network
12qPCR Primer Design Criteria
Specificity No repetitive 15-mer low BLAST
score highly unique 3 end reasonable sequence
complexity, etc. Sensitivity No secondary
structure no primer dimer, etc. Uniformity Simi
lar Tm, GC content, primer length, amplicon
length, etc.
13siRNA Design Criteria
Specificity No repetitive 15-mer low BLAST
score reasonable sequence complexity,
etc. Sensitivity No secondary
structure Uniformity siRNA length GC content
etc.
14Challenges In siRNA Design
- RNAi mechanism is complex many factors could
affect siRNA efficiency - No well-defined guideline for siRNA efficiency
- Need to absorb the latest progress on RNAi
studies
15New Findings on siRNA Efficiency
Asymmetry in the assembly of the RNAi enzyme
complex. Schwarz DS, Hutvagner G, Du T, Xu Z,
Aronin N, Zamore PD. Cell. 2003 Oct
17115(2)199-208. Functional siRNAs and miRNAs
exhibit strand bias. Khvorova A, Reynolds A,
Jayasena SD. Cell. 2003 Oct 17115(2)209-16.
16Functional siRNA Has Unstable 5-End
Functional siRNAs Non-functional siRNAs
Cell 115 209 (2003)
17Cell 2003 115 (2) 199
18Talk Summary
- Real-Time PCR Primer Design
- siRNA Design
- Microarray Data Analyses For NF-?B Pathway
- Mammalian Gene Association Network
19NF-?B Functions
- Inflammatory and stress responses
- Apoptosis
- Cell proliferation and differentiation
20NF-?B Signaling Pathway
Nature Rev Immunol (2002) 2725
21?B-ras1 Binds and Stabilizes I?B
?B-Ras1
I?B-ß
PEST domain
22Microarray Experimental Design
WT1 KO1 WT2 KO2
WT3 KO3
slide1 slide2 slide3 slide4
slide5 slide6
23Microarray Data Processing Pipeline
Visually inspect slide images for bad spots
Filter out insignificant spots or high background
Identify statistically significant genes across
replicated slides
Generate a gene list sorted by significance
24Global Gene Expression Changes
Sample Signals
Control Signals
25The Most Significantly Down-regulated Genes In
Knockout Mice
Gene Ratio P-value Description
26Cytochrome P-450
- Broad biological functions
- blood homeostasis
- cholesterol and steroid biosyntheses
- drug metabolism
- Diseases involved
- hypertension, diabetes, obesity, etc.
27Conclusions
- ?B-ras1 down-regulates cytochrome P450 gene
expression. - 2. ?B-ras1 may regulate lipid metabolism in
liver cells.
28Gene Expression Regulation by NF-?B
Transcription Starting Site
NF-?B
?B site
NF-?B regulated gene
29Analysis on Genes with ?B Sites
All arrayed genes
NF-?B activation
Microarray
?BSearch
Significant gene expression changes
Genes with ?B sites
Combined analysis
30Differentially Expressed Genes With ?B Sites
Gene Ratio P-value Description
31Talk Summary
- Real-Time PCR Primer Design
- siRNA Design
- Microarray Data Analyses For NF-?B Pathway
- Mammalian Gene Association Network
32Gene Coexpression
- Microarray expression profiling can be used to
identify coexpressed genes - Gene coexpressions infer functional gene
associations
33Data Sources
- Microarray data NCBI GEO database
- Orthologous gene map NCBI HomoloGene
- Functional categories Gene Ontology Consortium
34Strategy Outline
Microarray Data
Human-mouse gene map
Conserved gene coexpressions
Functional categories
Functional associations
Predict gene functions
35High-Throughput Microarray Expression Profiling
- Affymetrix data from 69 experiments
- 746 human arrays
- 847 mouse arrays
36Microarray Data Analysis
Normalize all 1593 Affy chips
Identify the expression profile for every gene
Calculate coexpressions for all combinations of
two genes
Determine the significance (P values) of the
coexpressions
Correct P values by False Discovery Rate
Coexpression clusters
37NF- ?B Coexpression Clusters
38NF- ?B Coexpressed Genes
39Functional Association Scores
For each coexpression cluster
Ph and Pm - Coexpression p values for human and
mouse, respectively Sgo number of genes in one
functional category
40Functional Associations
Functional Association Scores
Monte Carlo simulations
False Discovery Rate
Significant functional associations
Predict gene functions
41Predict Gene Functional Associations
- Gene APPBP1
- Associated with Alzheimer's disease
- Function E1 ubiquitin-activating enzyme
42APPBP1 Functional Associations
43Predict Gene Functional Associations
- Gene HM9088
- Gene mutation leads to Parkinsons disease
- Function unknown
44HM9088 Functional Associations
45Acknowledgments
- Brian Seed
- Seed Lab
- Nancy Spandidos, Yi Yang
- Freeman Lab
- Mason Freeman, Harry Bjorkbacka
- The DNA Core Facility
- Glenn Short, Shukui Guan, Tao Lan
- Bioinformatics Group
- Lance Davidow, Jonathan Urbach