Title: Processing HARDI Data to Recover Crossing Fibers
1Processing HARDI Data to Recover Crossing Fibers
Maxime Descoteaux PhD student Advisor Rachid
Deriche Odyssée Laboratory, INRIA/ENPC/ENS, INRI
A Sophia-Antipolis, France
2Plan of the talk
- Introduction of HARDI data
- Spherical Harmonics Estimation of HARDI
- Q-Ball Imaging and ODF Estimation
- Multi-Modal Fiber Tracking
3Brain white matter connections
Short and long association fibers in the right
hemisphere (Williams-etal97)
4Cerebral Anatomy
Radiations of the corpus callosum
(Williams-etal97)
5Diffusion MRI recalling the basics
- Brownian motion or average PDF of water molecules
is along white matter fibers - Signal attenuation proportional to average
diffusion - in a voxel
Poupon, PhD thesis
6Classical DTI model
DTI --gt
- Brownian motion P of water molecules can be
described by a Gaussian diffusion - process characterized by rank-2 tensor D (3x3
symmetric positive definite)
Diffusion profile qTDq
Diffusion MRI signal S(q)
7Principal direction of DTI
8Limitation of classical DTI
True diffusion profile
DTI diffusion profile
Poupon, PhD thesis
- DTI fails in the presence of many principal
directions of different fiber bundles within the
same voxel - Non-Gaussian diffusion process
9High Angular Resolution Diffusion Imaging (HARDI)
162 points
252 points
- N gradient directions
- We want to recover fiber crossings
- Solution Process all discrete noisy samplings on
the sphere using high order formulations
Wedeen, Tuch et al 2002
10Our Contributions
- New regularized spherical harmonic estimation of
the HARDI signal - New approach for fast and analytical ODF
reconstruction in Q-Ball Imaging - New multi-modal fiber tracking algorithm
11Sketch of the approach
Data on the sphere
For l 6, C c1, c2 , , c28
Spherical harmonic description of data
ODF
ODF
12Spherical Harmonic Estimation of the Signal
- Description of discrete data on the sphere
- Physically meaningful spherical harmonic basis
- Regularization of the coefficients
13Spherical harmonicsformulation
- Orthonormal basis for complex functions on the
sphere - Symmetric when order l is even
- We define a real and symmetric modified basis Yj
such that the signal
Descoteaux et al. MRM 562006
14Spherical Harmonics (SH) coefficients
- In matrix form, S CB
- S discrete HARDI data 1 x N
- C SH coefficients 1 x R
(1/2)(order 1)(order 2) - B discrete SH, Yj(??????????R x N
- (N diffusion gradients and R SH basis elements)
- Solve with least-square
- C (BTB)-1BTS
- Brechbuhel-Gerig et al. 94
15Regularization with the Laplace-Beltrami ?b
- Squared error between spherical function F and
its smooth version on the sphere ?bF - SH obey the PDE
- We have,
-
16Minimization ?-regularization
- Minimize
- (CB - S)T(CB - S) ?CTLC
- gt
- C (BTB ?L)-1 BTS
- Find best ? with L-curve method
- Intuitively, ? is a penalty for having higher
order terms in the modified SH series - gt higher order terms only included when needed
17Effect of regularization
Descoteaux et al., MRM 06
? 0
With Laplace-Beltrami regularization
18Fast Analytical ODF Estimation
- Q-Ball Imaging
- Funk-Hecke Theorem
- Fiber detection
19Q-Ball Imaging (QBI) Tuch MRM04
- ODF can be computed directly from the HARDI
signal over a single ball - Integral over the perpendicular equator
Funk-Radon Transform
ODF -gt
Tuch MRM04
ODF
20Illustration of the Funk-Radon Transform (FRT)
Diffusion Signal
21Funk-Hecke Theorem
Funk 1916, Hecke 1918
22Recalling Funk-Radon integral
23Solving the FR integralTrick using a delta
sequence
24Final Analytical ODF expression in SH coefficients
- Fast speed-up factor of 15 with classical QBI
- Validated against ground truth and classical QBI
?
Descoteaux et al. ISBI 06 HBM 06
25Biological phantom
Campbell et al. NeuroImage 05
T1-weigthed
Diffusion tensors
26Corpus callosum - corona radiata - superior
longitudinal fasciculus
FA map diffusion tensors
ODF maxima
27Corona radiata diverging fibers - superior
longitudinal fasciculus
FA map diffusion tensors
ODF maxima
28Multi-Modal Fiber Tracking
- Extract ODF maxima
- Extension to streamline FACT
29Streamline Tracking
- FACT Fiber Assignment by Continuous Tracking
- Follow principal eigenvector of diffusion tensor
- Stop if FA lt thresh and if curving angle gt ?
- ?typically thresh 0.15 and?? 45 degrees)
- Limited and incorrect in regions of fiber
crossing - Used in many clinical applications
Mori et al, 1999 Conturo et al, 1999, Basser et
al 2000
30Limitations of DTI-FACT
31DTI-FACT Tracking
start-gt
32DTI-FACT ODF maxima
start-gt
33Principal ODF FACT Tracking
start-gt
34Multi-Modal ODF FACT
start-gt
35DTI-FACT Tracking
start-gt
36Principal ODF FACT Tracking
start-gt
37Multi-Modal ODF FACT
start-gt
38DTI-FACT Tracking
start-gt
start-gt
39DTI-FACT Tracking
start-gt
start-gt
Very low FA threshold
lt-start
start-gt
Lower FA thresh
40Principal ODF FACT Tracking
start-gt
start-gt
41Multi-modal FACT Tracking
start-gt
start-gt
42Summary
Signal S on the sphere
Spherical harmonic description of S
Multi-Modal tracking
ODF
Fiber directions
43Contributions advantages
- Regularized spherical harmonic (SH) description
of the signal - Analytical ODF reconstruction
- Solution for all directions in a single step
- Faster than classical QBI by a factor 15
- SH description has powerful properties
- Easy solution to Laplace-Beltrami smoothing,
inner products, integrals on the sphere - Application for sharpening, deconvolution, etc
44Contributions advantages
- 4) Tracking using ODF maxima Generalized FACT
algorithm - gt Overcomes limitations of FACT from DTI
- Principal ODF direction
- Does not follow wrong directions in regions of
crossing - Multi-modal ODF FACT
- Can deal with fanning, branching and crossing
fibers
45Perspectives
- Multi-modal tracking in the human brain
- Tracking with geometrical information from
locally supporting neighborhoods - Local curvature and torsion information
- Better label sub-voxel configurations like
bottleneck, fanning, merging, branching, crossing - Consider the full diffusion ODF in the tracking
and segmentation - Probabilistic tracking from full ODF
Savadjiev Siddiqi et al. MedIA 06, Campbell
Siddiqi et al. ISBI 06
46BrainVISA/Anatomist
- Odyssée Tools Available
- ODF Estimation, GFA Estimation
- Odyssée Visualization
- more ODF and DTI applications
- http//brainvisa.info/
- Used by
- CMRR, University of Minnesota, USA
- Hopital Pitié-Salpétrière, Paris
47Thank you!
- Thanks to collaborators
- C. Lenglet, P. Savadjiev, J. Campbell, B. Pike,
K. Siddiqi, E. Angelino, - S. Fitzgibbons, A. Andanwer
- Key references
- -Descoteaux et al, ADC Estimation and
Applications, MRM 56, 2006.-Descoteaux et al, A
Fast and Robust ODF Estimation Algorithm in
Q-Ball Imaging, ISBI 2006. - -http//www-sop.inria.fr/odyssee/team/Maxime.Desco
teaux/index.en.html - -Ozarslan et al., Generalized tensor imaging and
analytical relationships between diffusion tensor
and HARDI, MRM 2003. - -Tuch, Q-Ball Imaging, MRM 52, 2004
48Principal direction of DTI
49(No Transcript)
50Spherical Harmonics
- SH
- SH PDE
- Real
- Modified basis
51Trick to solve the FR integral
- Use a delta sequence ?n approximation of the
delta function ? in the integral - Many candidates Gaussian of decreasing variance
- Important property
52?n is a delta sequence
1)
2)
gt
53Nice trick!
3)
gt
54Funk-Hecke Theorem
- Key Observation
- Any continuous function f on -1,1 can be
extended to a continous function on the unit
sphere g(x,u) f(xTu), where x, u are unit
vectors - Funk-Hecke thm relates the inner product of any
spherical harmonic and the projection onto the
unit sphere of any function f conitnuous on
-1,1
55Funk-Radon ODF
- Funk-Radon Transform
- True ODF
56Synthetic Data Experiment
- Multi-Gaussian model for input signal
- Exact ODF
57Field of Synthetic Data
b 1500 SNR 15 order 6
90? crossing
58ODF evaluation
59Tuch reconstruction vsAnalytic reconstruction
Analytic ODFs
Tuch ODFs
Difference 0.0356 - 0.0145 Percentage
difference 3.60 - 1.44
INRIA-McGill
60Human Brain
Analytic ODFs
Tuch ODFs
Difference 0.0319 - 0.0104 Percentage
difference 3.19 - 1.04
INRIA-McGill
61Time Complexity
- Input HARDI data x,y,z,N
- Tuch ODF reconstruction
- O(xyz N k)
- ?(8?N) interpolation point
- k ?(8?N)
- Analytic ODF reconstruction
- O(xyz N R)
- R SH elements in basis
62Time Complexity Comparison
- Tuch ODF reconstruction
- N 90, k 48 -gt rat data set
- 100 , k 51 -gt human brain
- 321, k 90 -gt cat data set
- Our ODF reconstruction
- Order 4, 6, 8 -gt m 15, 28, 45
gt Speed up factor of 3
63Time complexity experiment
- Tuch -gt O(XYZNk)
- Our analytic QBI -gt O(XYZNR)
- Factor 15 speed up
64Estimation of the ADC
- Characterize multi-fiber diffusion
- High order anisotropy measures
65Apparent Diffusion Coefficient
ADC profile D(g) gTDg
66In the HARDI literature
- 2 class of high order ADC fitting algorithms
- Spherical harmonic (SH) series
- Frank 2002, Alexander et al 2002, Chen et al
2004 - High order diffusion tensor (HODT)
- Ozarslan et al 2003, Liu et al 2005
67High order diffusion tensor (HODT) generalization
- Rank l 2 3x3
- D Dxx Dyy Dzz Dxy Dxz Dyz
- Rank l 4 3x3x3x3
- D Dxxxx Dyyyy Dzzzz Dxxxy Dxxxz Dyzzz Dyyyz
Dzzzx Dzzzy Dxyyy Dxzzz Dzyyy Dxxyy Dxxzz Dyyzz
68Tensor generalization of ADC
- Generalization of the ADC,
- rank-2 D(g) gTDg
- rank-l
-
General tensor
Independent elements Dk of the tensor
Ozarslan et al., mrm 2003
69Summary of algorithm
Spherical Harmonic (SH) Series
High Order Diffusion Tensor (HODT)
HODT D from linear-regression
Modified SH basis Yj
Least-squares with ?-regularization
M transformation
C (BTB ?L)-1BTX
D M-1C
Descoteaux et al. MRM 562006
70 3 synthetic fiber crossing
71(No Transcript)
72(No Transcript)
73ADC limitations for tracking
- Maxima do not agree with underlying fibers
- ADC is in signal space (q-space)
HARDI ADC profiles
Campbell et al., McGill University, Canada
Need a function that is in real space with maxima
that agree with fibers gt ODF
74High Order Descriptions
- Seek to characterize multiple fiber diffusion
- Apparent Diffusion Coefficient (ADC)
- Orientation Distribution Function (ODF)
ADC profile
Diffusion ODF
Fiber distribution