Processing HARDI Data to Recover Crossing Fibers - PowerPoint PPT Presentation

About This Presentation
Title:

Processing HARDI Data to Recover Crossing Fibers

Description:

Processing HARDI Data to Recover Crossing Fibers – PowerPoint PPT presentation

Number of Views:138
Avg rating:3.0/5.0
Slides: 72
Provided by: christophe350
Category:

less

Transcript and Presenter's Notes

Title: Processing HARDI Data to Recover Crossing Fibers


1
Processing HARDI Data to Recover Crossing Fibers
Maxime Descoteaux PhD student Advisor Rachid
Deriche Odyssée Laboratory, INRIA/ENPC/ENS, INRI
A Sophia-Antipolis, France
2
Plan of the talk
  • Introduction of HARDI data
  • Spherical Harmonics Estimation of HARDI
  • Q-Ball Imaging and ODF Estimation
  • Multi-Modal Fiber Tracking

3
Brain white matter connections
Short and long association fibers in the right
hemisphere (Williams-etal97)
4
Cerebral Anatomy
Radiations of the corpus callosum
(Williams-etal97)
5
Diffusion MRI recalling the basics
  • Brownian motion or average PDF of water molecules
    is along white matter fibers
  • Signal attenuation proportional to average
    diffusion
  • in a voxel

Poupon, PhD thesis
6
Classical DTI model
DTI --gt
  • Brownian motion P of water molecules can be
    described by a Gaussian diffusion
  • process characterized by rank-2 tensor D (3x3
    symmetric positive definite)

Diffusion profile qTDq
Diffusion MRI signal S(q)
7
Principal direction of DTI
8
Limitation of classical DTI
True diffusion profile
DTI diffusion profile
Poupon, PhD thesis
  • DTI fails in the presence of many principal
    directions of different fiber bundles within the
    same voxel
  • Non-Gaussian diffusion process

9
High Angular Resolution Diffusion Imaging (HARDI)
162 points
252 points
  • N gradient directions
  • We want to recover fiber crossings
  • Solution Process all discrete noisy samplings on
    the sphere using high order formulations

Wedeen, Tuch et al 2002
10
Our Contributions
  • New regularized spherical harmonic estimation of
    the HARDI signal
  • New approach for fast and analytical ODF
    reconstruction in Q-Ball Imaging
  • New multi-modal fiber tracking algorithm

11
Sketch of the approach
Data on the sphere
For l 6, C c1, c2 , , c28
Spherical harmonic description of data
ODF
ODF
12
Spherical Harmonic Estimation of the Signal
  • Description of discrete data on the sphere
  • Physically meaningful spherical harmonic basis
  • Regularization of the coefficients

13
Spherical harmonicsformulation
  • Orthonormal basis for complex functions on the
    sphere
  • Symmetric when order l is even
  • We define a real and symmetric modified basis Yj
    such that the signal

Descoteaux et al. MRM 562006
14
Spherical Harmonics (SH) coefficients
  • In matrix form, S CB
  • S discrete HARDI data 1 x N
  • C SH coefficients 1 x R
    (1/2)(order 1)(order 2)
  • B discrete SH, Yj(??????????R x N
  • (N diffusion gradients and R SH basis elements)
  • Solve with least-square
  • C (BTB)-1BTS
  • Brechbuhel-Gerig et al. 94

15
Regularization with the Laplace-Beltrami ?b
  • Squared error between spherical function F and
    its smooth version on the sphere ?bF
  • SH obey the PDE
  • We have,

16
Minimization ?-regularization
  • Minimize
  • (CB - S)T(CB - S) ?CTLC
  • gt
  • C (BTB ?L)-1 BTS
  • Find best ? with L-curve method
  • Intuitively, ? is a penalty for having higher
    order terms in the modified SH series
  • gt higher order terms only included when needed

17
Effect of regularization
Descoteaux et al., MRM 06
? 0
With Laplace-Beltrami regularization
18
Fast Analytical ODF Estimation
  • Q-Ball Imaging
  • Funk-Hecke Theorem
  • Fiber detection

19
Q-Ball Imaging (QBI) Tuch MRM04
  • ODF can be computed directly from the HARDI
    signal over a single ball
  • Integral over the perpendicular equator
    Funk-Radon Transform

ODF -gt
Tuch MRM04
ODF
20
Illustration of the Funk-Radon Transform (FRT)
Diffusion Signal
21
Funk-Hecke Theorem
Funk 1916, Hecke 1918
22
Recalling Funk-Radon integral
23
Solving the FR integralTrick using a delta
sequence
24
Final Analytical ODF expression in SH coefficients
  • Fast speed-up factor of 15 with classical QBI
  • Validated against ground truth and classical QBI

?
Descoteaux et al. ISBI 06 HBM 06
25
Biological phantom
Campbell et al. NeuroImage 05
T1-weigthed
Diffusion tensors
26
Corpus callosum - corona radiata - superior
longitudinal fasciculus
FA map diffusion tensors
ODF maxima
27
Corona radiata diverging fibers - superior
longitudinal fasciculus
FA map diffusion tensors
ODF maxima
28
Multi-Modal Fiber Tracking
  • Extract ODF maxima
  • Extension to streamline FACT

29
Streamline Tracking
  • FACT Fiber Assignment by Continuous Tracking
  • Follow principal eigenvector of diffusion tensor
  • Stop if FA lt thresh and if curving angle gt ?
  • ?typically thresh 0.15 and?? 45 degrees)
  • Limited and incorrect in regions of fiber
    crossing
  • Used in many clinical applications

Mori et al, 1999 Conturo et al, 1999, Basser et
al 2000
30
Limitations of DTI-FACT
31
DTI-FACT Tracking
start-gt
32
DTI-FACT ODF maxima
start-gt
33
Principal ODF FACT Tracking
start-gt
34
Multi-Modal ODF FACT
start-gt
35
DTI-FACT Tracking
start-gt
36
Principal ODF FACT Tracking
start-gt
37
Multi-Modal ODF FACT
start-gt
38
DTI-FACT Tracking
start-gt
start-gt
39
DTI-FACT Tracking
start-gt
start-gt
Very low FA threshold
lt-start
start-gt
Lower FA thresh
40
Principal ODF FACT Tracking
start-gt
start-gt
41
Multi-modal FACT Tracking
start-gt
start-gt
42
Summary
Signal S on the sphere
Spherical harmonic description of S
Multi-Modal tracking
ODF
Fiber directions
43
Contributions advantages
  • Regularized spherical harmonic (SH) description
    of the signal
  • Analytical ODF reconstruction
  • Solution for all directions in a single step
  • Faster than classical QBI by a factor 15
  • SH description has powerful properties
  • Easy solution to Laplace-Beltrami smoothing,
    inner products, integrals on the sphere
  • Application for sharpening, deconvolution, etc

44
Contributions advantages
  • 4) Tracking using ODF maxima Generalized FACT
    algorithm
  • gt Overcomes limitations of FACT from DTI
  • Principal ODF direction
  • Does not follow wrong directions in regions of
    crossing
  • Multi-modal ODF FACT
  • Can deal with fanning, branching and crossing
    fibers

45
Perspectives
  • Multi-modal tracking in the human brain
  • Tracking with geometrical information from
    locally supporting neighborhoods
  • Local curvature and torsion information
  • Better label sub-voxel configurations like
    bottleneck, fanning, merging, branching, crossing
  • Consider the full diffusion ODF in the tracking
    and segmentation
  • Probabilistic tracking from full ODF

Savadjiev Siddiqi et al. MedIA 06, Campbell
Siddiqi et al. ISBI 06
46
BrainVISA/Anatomist
  • Odyssée Tools Available
  • ODF Estimation, GFA Estimation
  • Odyssée Visualization
  • more ODF and DTI applications
  • http//brainvisa.info/
  • Used by
  • CMRR, University of Minnesota, USA
  • Hopital Pitié-Salpétrière, Paris

47
Thank you!
  • Thanks to collaborators
  • C. Lenglet, P. Savadjiev, J. Campbell, B. Pike,
    K. Siddiqi, E. Angelino,
  • S. Fitzgibbons, A. Andanwer
  • Key references
  • -Descoteaux et al, ADC Estimation and
    Applications, MRM 56, 2006.-Descoteaux et al, A
    Fast and Robust ODF Estimation Algorithm in
    Q-Ball Imaging, ISBI 2006.
  • -http//www-sop.inria.fr/odyssee/team/Maxime.Desco
    teaux/index.en.html
  • -Ozarslan et al., Generalized tensor imaging and
    analytical relationships between diffusion tensor
    and HARDI, MRM 2003.
  • -Tuch, Q-Ball Imaging, MRM 52, 2004

48
Principal direction of DTI
49
(No Transcript)
50
Spherical Harmonics
  • SH
  • SH PDE
  • Real
  • Modified basis

51
Trick to solve the FR integral
  • Use a delta sequence ?n approximation of the
    delta function ? in the integral
  • Many candidates Gaussian of decreasing variance
  • Important property

52
?n is a delta sequence
1)
2)
gt
53
Nice trick!
3)
gt
54
Funk-Hecke Theorem
  • Key Observation
  • Any continuous function f on -1,1 can be
    extended to a continous function on the unit
    sphere g(x,u) f(xTu), where x, u are unit
    vectors
  • Funk-Hecke thm relates the inner product of any
    spherical harmonic and the projection onto the
    unit sphere of any function f conitnuous on
    -1,1

55
Funk-Radon ODF
  • Funk-Radon Transform
  • True ODF

56
Synthetic Data Experiment
  • Multi-Gaussian model for input signal
  • Exact ODF

57
Field of Synthetic Data
b 1500 SNR 15 order 6
90? crossing
58
ODF evaluation
59
Tuch reconstruction vsAnalytic reconstruction
Analytic ODFs
Tuch ODFs
Difference 0.0356 - 0.0145 Percentage
difference 3.60 - 1.44
INRIA-McGill
60
Human Brain
Analytic ODFs
Tuch ODFs
Difference 0.0319 - 0.0104 Percentage
difference 3.19 - 1.04
INRIA-McGill
61
Time Complexity
  • Input HARDI data x,y,z,N
  • Tuch ODF reconstruction
  • O(xyz N k)
  • ?(8?N) interpolation point
  • k ?(8?N)
  • Analytic ODF reconstruction
  • O(xyz N R)
  • R SH elements in basis

62
Time Complexity Comparison
  • Tuch ODF reconstruction
  • N 90, k 48 -gt rat data set
  • 100 , k 51 -gt human brain
  • 321, k 90 -gt cat data set
  • Our ODF reconstruction
  • Order 4, 6, 8 -gt m 15, 28, 45

gt Speed up factor of 3
63
Time complexity experiment
  • Tuch -gt O(XYZNk)
  • Our analytic QBI -gt O(XYZNR)
  • Factor 15 speed up

64
Estimation of the ADC
  • Characterize multi-fiber diffusion
  • High order anisotropy measures

65
Apparent Diffusion Coefficient
ADC profile D(g) gTDg
66
In the HARDI literature
  • 2 class of high order ADC fitting algorithms
  • Spherical harmonic (SH) series
  • Frank 2002, Alexander et al 2002, Chen et al
    2004
  • High order diffusion tensor (HODT)
  • Ozarslan et al 2003, Liu et al 2005

67
High order diffusion tensor (HODT) generalization
  • Rank l 2 3x3
  • D Dxx Dyy Dzz Dxy Dxz Dyz
  • Rank l 4 3x3x3x3
  • D Dxxxx Dyyyy Dzzzz Dxxxy Dxxxz Dyzzz Dyyyz
    Dzzzx Dzzzy Dxyyy Dxzzz Dzyyy Dxxyy Dxxzz Dyyzz

68
Tensor generalization of ADC
  • Generalization of the ADC,
  • rank-2 D(g) gTDg
  • rank-l

General tensor
Independent elements Dk of the tensor
Ozarslan et al., mrm 2003
69
Summary of algorithm
Spherical Harmonic (SH) Series
High Order Diffusion Tensor (HODT)
HODT D from linear-regression
Modified SH basis Yj
Least-squares with ?-regularization
M transformation
C (BTB ?L)-1BTX
D M-1C
Descoteaux et al. MRM 562006
70
3 synthetic fiber crossing
71
(No Transcript)
72
(No Transcript)
73
ADC limitations for tracking
  • Maxima do not agree with underlying fibers
  • ADC is in signal space (q-space)

HARDI ADC profiles
Campbell et al., McGill University, Canada
Need a function that is in real space with maxima
that agree with fibers gt ODF
74
High Order Descriptions
  • Seek to characterize multiple fiber diffusion
  • Apparent Diffusion Coefficient (ADC)
  • Orientation Distribution Function (ODF)

ADC profile
Diffusion ODF
Fiber distribution
Write a Comment
User Comments (0)
About PowerShow.com