Interferometra - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Interferometra

Description:

Una fuente puntual y monocrom tica en el infinito ... 'Small moving regions of atmosphere having refracting power which act like lenses' ... – PowerPoint PPT presentation

Number of Views:82
Avg rating:3.0/5.0
Slides: 32
Provided by: avi45
Category:

less

Transcript and Presenter's Notes

Title: Interferometra


1
Interferometría
  • El caso más sencillo Interferómetro de Fizeau
  • Una fuente puntual y monocromática en el infinito
  • 2 pinholes (hoyitos de diámetro despreciable) en
    la pupila.
  • Queremos conocer la intensidad en el punto r del
    plano focal de la lente (telescopio).
  • En cualquier libro de óptica encuentran el
    desarrollo clásico (v.g. Hetch Optics).
  • Con óptica de Fourier, verán que se hace en dos
    patadas.

D
F
r
2
El caso más sencillo
TF
D
TF
F
r
3
Y si el Objeto No Es Puntual ?
TF
D
TF
F
r
4
Y si el Objeto No Es Puntual ?
D
F
r
5
Y si el Objeto No Es Puntual ?
  • Y la intensidad

GRADO DE COHERENCIA ESPACIAL Para un radiación
incoherente
Empezamos a adivinar franjas
6
Y si el Objeto No Es Puntual ?
FRANJAS TFOBJETO
FRANJAS VISIBILIDAD
Visibilidad
D
D
7
Llenando el plano UV
  • Midiendo la visibilidad para distintos valores de
    u se va llenando el plano de la TF del objeto.
  • Esto se logra con varios pares de telescopios,
    y/o variando la separación entre ellos, y/o l.
    Una manera es dejando que la tierra gire.

DBcos(q)
q
B

8
Llenando el plano UV
  • En radio es más facil medir la visibilidad del
    objeto, ya que se mide la onda (amplitud y fase)
    proveniente de cada telescopio, mientras que en
    el óptico se mide la intensidad de la
    interferencia.
  • Se demuestra que (Teorema de Zernike-Van
    Cittert)
  • En radio se mide directamente G(u).

9
Radiointerferometría
  • Como un telescopio con pupila en Y.
  • Resolución dada por la separación máxima.
    Ejemplo para l7 mm y B 36 km,
  • e0.04
  • El plano de la pupila se va llenando gracias a la
    rotación de la Tierra.

Hasta 36 km
10
Fluctuaciones de Vapor de Agua
  • Recordemos en l milimétrica, DH ?
    DN

  • ? Df

?
CN2(h) , v(h), L0(h)
Tropósfera lt 5 km
11
Función de Estructura en el VLA
?rms(?) ? ?(r) - ?(r?) 2 ? 1/2
5/6
1/3
For Kolmogorov Law ?rms(?) l-1 ? a
Para l1 mm, r0 cientos de metros
Carilli et al. 1998
12
Fast Switching para Corregir la Fase
HH47
El interferómetro mide ?(r) - ?(r?) de forma
natural. Esta información se usa para formar
imágenes. Al observar un objeto puntual, ?(r) -
?(r?) proviene de la atmósfera y de los
instrumentos. Tiempo del ciclo 1
a 10 s !!
r
El error depende de rh v Dt
rh
v
h
13
Review on Observational Methods for the Study of
Optical Turbulence
IAU Workshop Site 2000 Marrakech 2000
14
Outline
  • History Before a quantitative description
  • Parameters of optical turbulence a sketch
  • Methods for profiling optical turbulence
  • In situ measurements
  • Scintillation
  • Radar, Sodar, Lidar
  • Methods for the study of integrated parameters
  • Long exposure images, Scintillation
  • Angle of Arrival, Centroid motion
  • Reconstructed Zernikes
  • Interferometry
  • Speckle interferometry
  • Curvature
  • Perspectives

Only earliest references will be given
15
History Before a Quantitative Description
  • Twinkling of stars has been noticed all over
    history
  • One of the first references Aristotle in The
    Heavens
  • Hooke (1665) Small moving regions of atmosphere
    having refracting power which act like
    lenses
  • Newton (1730) The air in which we look is in
    perpetual tremor
  • Danjon (1926) Semiquantitative visual scale of
    seeing
  • Couder (1936) Photography of star trails
  • Whitford Stebbins (1936) Photoelectric
    detection of scintillation
  • Reviews of semiquantitative measurements of image
    quality
  • Stock Keller (1960)
  • Meinel (1960)
  • Rosch, Courtes and Dommanget (1965)
  • The era of quantitative measurements began with
    the description of Wave Propagation in a
    Turbulent Medium by Tatarskii (1961)

16
Parameters of Optical Turbulence
Fried 66, Roddier 1982, Fried Belsher 1994,
Borgnino 1990
17
Methods for Profiling In Situ Measurements
  • Balloon-borne microthermal measurements (Coulman
    1973, Bufton 1973)

Azouit et al.
  • Metheorological data numerical model
    (Coulman et al. 1973)
  • In situ measurements of the average T, P, V
    profiles
  • numerical model to estimate CN2(h)
  • See review talk by E. Masciadri

18
Profiling Scintillation ( CN2(h) with Scidar )
?
Rocca et al. 1974, Tallon 1989, Avila et al. 1997
1
h
hgs
d1? ( h hgs )
Scintillation
19
Profiling Scintillation ( V(h) with Scidar )
?
Kluckers et al. 1998 Avila 1998
h
hgs
d? (h hgs)
d
instant t
instant t
instant t
instant t?t
20
The Instrument
D
hgsgt0
P
ftel
Lfield
Lcol
fcol
hgslt0
P
hgsgt0
hgslt0
Detector
Digitising card DSP C80
21
Data Processing
t
t20ms
t40ms
Profile
Power spectrum
Autocorrelation
TF
TF
TF
Maximum entropy
Cross spectrum 1
Cross correlation 1
Cross spectrum 2
Cross correlation 2
22
Profiling Scintillation ( Single Star )
  • Spatio-temporal cross correlation (Rocca et al.
    1974)
  • Peak position g V
  • Peak width (lh)1/2 g h, Peak intensity g CN2
  • But fluctuations of V (DV) spread peak and
    decrease its intensity
  • Ambiguity can be broken with cross
  • correlations at different Dt (Caccia
    Vernin 1990)
  • Spatial filtering of scintillation (Ochs et al.
    1976)
  • g CN2(h) with low vertical resolution
  • New ideas for CN2 profiling using single-star
    scintillation
  • See talks by M. Chun and A. Tokovinin
  • Scintillation of uneclipsed sun measured with an
    array of photodiodes
  • g daytime CN2(h) (Beckers Mason 1998) see talk
    by J. Beckers

23
Profiling CN2(h) with Other Techniques
  • Radar (Ottersen 1969)
  • Eddies of size lR/2 backscatter radar signal
  • But influence of humidity is hard to remove
  • Sodar (Wesely 1974)
  • Thermal turbulence backscatters sodar signal
  • Range up to 1.5 km
  • Calibration resolved
  • Lidar (Belenkii Gimmestad 1994)
  • Proposed to measure the variance of laser beacon
    image jitter at different altitudes
  • Angle of Arrival (AA) from Solar Limb
  • Angular Structure function of AA (Bouzid et al
    1999)
  • D(q) lta(x)-a(xq)2gt ? CN2(h) F(h,q) dh
  • See talk by A. Bouzid

24
Integrated Parameters
  • Long exposure images of point sources
  • Telescope aberrations included
  • Telescope vibrations and guiding errors included
  • Scintillometer
  • Simple
  • Ambiguity variance depends on CN2(h) and on h
  • sI2 19.12 l-7/6 ? dh h5/6 CN2(h)

eA eT
25
Angle of Arrival (AA) - Image Motion
  • Shack Hartman sensor AA measurements
  • Spatial studies (Dayton et al. 1992, Ziad et al.
    1994, )
  • Structure function, spatial correlation
  • g r0 , test of Kolmogorov turbulence, L0
  • Temporal studies (Soules et al. 1989, Madec et
    al. 1993)
  • Spatio-temporal structure function,
    spatio-temporal correlation
  • g r0 , ?0 , test of Kolmogorov turbulence,
    Taylors hypothesis
  • g Velocity of different layers (Gendron Lena
    1996)

Imperial College
26
Angle of Arrival (AA) - Image Motion
  • Generalized Seeing Monitor
  • ( Martin et al. 1994 )
  • Angle of Arrival (?) in 1 direction
  • Variance ? r0
  • Spatial covariance ? L0
  • Temporal cross-correlation ? ?0
  • Scintillation ? q0
  • 4 independent modules
  • Any bright single star
  • 6 baselines at a time in 2D
  • See talks by F. Martin and
  • A. Ziad

Photo Martin, Nice U.
27
Angle of Arrival (AA) - Image Motion
  • Differential Image Motion Monitor DIMM (Stock et
    al. 1960, )
  • Centroid spatial structure function
  • g r0 , considering Kolmogorov spectrum
  • Effect of exposure time (Martin 1987, Soules et
    al. 1996)
  • Effect of outer scale (Ziad 1993 )
  • Velocity of AA fluctuations (Lopez 1992 )
  • g t0 , considering Kolmogorov spectrum

Washington U.
Washington U.
28
Angle of Arrival (AA) - Image Motion
  • Extended objects
  • Solar limb (Irbah et al. 1993)
  • Moon edge (Ghedina et al. 1998)
  • Angular structure function or correlation of AA
  • g isokinetic patch
  • differential measurements

Edge position g AA
columns
29
Interferometry
  • Rotation Shear interferometer (Roddier 1976, )
  • Fringe contrast at B2r
  • r0
  • model independent

-r


r
Pupil
Interferogram
Rotated pupil tilt
30
Other Techniques
  • Speckle interferometry (Weigelt et al. 1986, Aime
    et al. 1986, )
  • Autocorrelation
  • g Atmospheric PSF, r0
  • Spatio-temporal correlation g t0
  • Spation-angular correlation g q0

Avila et al.
31
Perspectives
  • Fundamental questions suited for experimental
    studies
  • Horizontal extension of individual turbulent
    layers ?
  • Characteristic time of individual turbulent
    layers ?
  • Why L0 10 m while L0 25 m ?
  • Needs of muticonjugate adaptive optics and ELT
  • CN2 and v profiles monitoring in real time
  • In 3-D ?
  • Time for forecasting CN2(x,y,h) and v(x,y,h) ?
  • Dual approach measurements forecasting
Write a Comment
User Comments (0)
About PowerShow.com