Title: Interferometra
1Interferometría
- El caso más sencillo Interferómetro de Fizeau
- Una fuente puntual y monocromática en el infinito
- 2 pinholes (hoyitos de diámetro despreciable) en
la pupila.
- Queremos conocer la intensidad en el punto r del
plano focal de la lente (telescopio). - En cualquier libro de óptica encuentran el
desarrollo clásico (v.g. Hetch Optics). - Con óptica de Fourier, verán que se hace en dos
patadas.
D
F
r
2El caso más sencillo
TF
D
TF
F
r
3Y si el Objeto No Es Puntual ?
TF
D
TF
F
r
4Y si el Objeto No Es Puntual ?
D
F
r
5Y si el Objeto No Es Puntual ?
GRADO DE COHERENCIA ESPACIAL Para un radiación
incoherente
Empezamos a adivinar franjas
6Y si el Objeto No Es Puntual ?
FRANJAS TFOBJETO
FRANJAS VISIBILIDAD
Visibilidad
D
D
7Llenando el plano UV
- Midiendo la visibilidad para distintos valores de
u se va llenando el plano de la TF del objeto. - Esto se logra con varios pares de telescopios,
y/o variando la separación entre ellos, y/o l.
Una manera es dejando que la tierra gire.
DBcos(q)
q
B
8Llenando el plano UV
- En radio es más facil medir la visibilidad del
objeto, ya que se mide la onda (amplitud y fase)
proveniente de cada telescopio, mientras que en
el óptico se mide la intensidad de la
interferencia. - Se demuestra que (Teorema de Zernike-Van
Cittert) - En radio se mide directamente G(u).
9Radiointerferometría
- Como un telescopio con pupila en Y.
- Resolución dada por la separación máxima.
Ejemplo para l7 mm y B 36 km, - e0.04
- El plano de la pupila se va llenando gracias a la
rotación de la Tierra.
Hasta 36 km
10Fluctuaciones de Vapor de Agua
- Recordemos en l milimétrica, DH ?
DN -
? Df -
?
CN2(h) , v(h), L0(h)
Tropósfera lt 5 km
11Función de Estructura en el VLA
?rms(?) ? ?(r) - ?(r?) 2 ? 1/2
5/6
1/3
For Kolmogorov Law ?rms(?) l-1 ? a
Para l1 mm, r0 cientos de metros
Carilli et al. 1998
12Fast Switching para Corregir la Fase
HH47
El interferómetro mide ?(r) - ?(r?) de forma
natural. Esta información se usa para formar
imágenes. Al observar un objeto puntual, ?(r) -
?(r?) proviene de la atmósfera y de los
instrumentos. Tiempo del ciclo 1
a 10 s !!
r
El error depende de rh v Dt
rh
v
h
13Review on Observational Methods for the Study of
Optical Turbulence
IAU Workshop Site 2000 Marrakech 2000
14Outline
- History Before a quantitative description
- Parameters of optical turbulence a sketch
- Methods for profiling optical turbulence
- In situ measurements
- Scintillation
- Radar, Sodar, Lidar
- Methods for the study of integrated parameters
- Long exposure images, Scintillation
- Angle of Arrival, Centroid motion
- Reconstructed Zernikes
- Interferometry
- Speckle interferometry
- Curvature
- Perspectives
Only earliest references will be given
15History Before a Quantitative Description
- Twinkling of stars has been noticed all over
history - One of the first references Aristotle in The
Heavens - Hooke (1665) Small moving regions of atmosphere
having refracting power which act like
lenses - Newton (1730) The air in which we look is in
perpetual tremor - Danjon (1926) Semiquantitative visual scale of
seeing - Couder (1936) Photography of star trails
- Whitford Stebbins (1936) Photoelectric
detection of scintillation - Reviews of semiquantitative measurements of image
quality - Stock Keller (1960)
- Meinel (1960)
- Rosch, Courtes and Dommanget (1965)
- The era of quantitative measurements began with
the description of Wave Propagation in a
Turbulent Medium by Tatarskii (1961)
16Parameters of Optical Turbulence
Fried 66, Roddier 1982, Fried Belsher 1994,
Borgnino 1990
17Methods for Profiling In Situ Measurements
- Balloon-borne microthermal measurements (Coulman
1973, Bufton 1973)
Azouit et al.
- Metheorological data numerical model
(Coulman et al. 1973) - In situ measurements of the average T, P, V
profiles - numerical model to estimate CN2(h)
- See review talk by E. Masciadri
18Profiling Scintillation ( CN2(h) with Scidar )
?
Rocca et al. 1974, Tallon 1989, Avila et al. 1997
1
h
hgs
d1? ( h hgs )
Scintillation
19Profiling Scintillation ( V(h) with Scidar )
?
Kluckers et al. 1998 Avila 1998
h
hgs
d? (h hgs)
d
instant t
instant t
instant t
instant t?t
20The Instrument
D
hgsgt0
P
ftel
Lfield
Lcol
fcol
hgslt0
P
hgsgt0
hgslt0
Detector
Digitising card DSP C80
21Data Processing
t
t20ms
t40ms
Profile
Power spectrum
Autocorrelation
TF
TF
TF
Maximum entropy
Cross spectrum 1
Cross correlation 1
Cross spectrum 2
Cross correlation 2
22Profiling Scintillation ( Single Star )
- Spatio-temporal cross correlation (Rocca et al.
1974) - Peak position g V
- Peak width (lh)1/2 g h, Peak intensity g CN2
- But fluctuations of V (DV) spread peak and
decrease its intensity - Ambiguity can be broken with cross
- correlations at different Dt (Caccia
Vernin 1990)
- Spatial filtering of scintillation (Ochs et al.
1976) - g CN2(h) with low vertical resolution
- New ideas for CN2 profiling using single-star
scintillation - See talks by M. Chun and A. Tokovinin
- Scintillation of uneclipsed sun measured with an
array of photodiodes - g daytime CN2(h) (Beckers Mason 1998) see talk
by J. Beckers
23Profiling CN2(h) with Other Techniques
- Radar (Ottersen 1969)
- Eddies of size lR/2 backscatter radar signal
- But influence of humidity is hard to remove
- Sodar (Wesely 1974)
- Thermal turbulence backscatters sodar signal
- Range up to 1.5 km
- Calibration resolved
- Lidar (Belenkii Gimmestad 1994)
- Proposed to measure the variance of laser beacon
image jitter at different altitudes - Angle of Arrival (AA) from Solar Limb
- Angular Structure function of AA (Bouzid et al
1999) - D(q) lta(x)-a(xq)2gt ? CN2(h) F(h,q) dh
- See talk by A. Bouzid
24Integrated Parameters
- Long exposure images of point sources
- Telescope aberrations included
- Telescope vibrations and guiding errors included
- Scintillometer
- Simple
- Ambiguity variance depends on CN2(h) and on h
- sI2 19.12 l-7/6 ? dh h5/6 CN2(h)
eA eT
25Angle of Arrival (AA) - Image Motion
- Shack Hartman sensor AA measurements
- Spatial studies (Dayton et al. 1992, Ziad et al.
1994, ) - Structure function, spatial correlation
- g r0 , test of Kolmogorov turbulence, L0
- Temporal studies (Soules et al. 1989, Madec et
al. 1993) - Spatio-temporal structure function,
spatio-temporal correlation - g r0 , ?0 , test of Kolmogorov turbulence,
Taylors hypothesis - g Velocity of different layers (Gendron Lena
1996)
Imperial College
26Angle of Arrival (AA) - Image Motion
- Generalized Seeing Monitor
- ( Martin et al. 1994 )
- Angle of Arrival (?) in 1 direction
- Variance ? r0
- Spatial covariance ? L0
- Temporal cross-correlation ? ?0
- Scintillation ? q0
- 4 independent modules
- Any bright single star
- 6 baselines at a time in 2D
- See talks by F. Martin and
- A. Ziad
Photo Martin, Nice U.
27Angle of Arrival (AA) - Image Motion
- Differential Image Motion Monitor DIMM (Stock et
al. 1960, ) - Centroid spatial structure function
- g r0 , considering Kolmogorov spectrum
- Effect of exposure time (Martin 1987, Soules et
al. 1996) - Effect of outer scale (Ziad 1993 )
- Velocity of AA fluctuations (Lopez 1992 )
- g t0 , considering Kolmogorov spectrum
Washington U.
Washington U.
28Angle of Arrival (AA) - Image Motion
- Extended objects
- Solar limb (Irbah et al. 1993)
- Moon edge (Ghedina et al. 1998)
- Angular structure function or correlation of AA
- g isokinetic patch
- differential measurements
Edge position g AA
columns
29Interferometry
- Rotation Shear interferometer (Roddier 1976, )
- Fringe contrast at B2r
- r0
- model independent
-r
r
Pupil
Interferogram
Rotated pupil tilt
30Other Techniques
- Speckle interferometry (Weigelt et al. 1986, Aime
et al. 1986, )
- Autocorrelation
- g Atmospheric PSF, r0
- Spatio-temporal correlation g t0
- Spation-angular correlation g q0
Avila et al.
31Perspectives
- Fundamental questions suited for experimental
studies - Horizontal extension of individual turbulent
layers ? - Characteristic time of individual turbulent
layers ? - Why L0 10 m while L0 25 m ?
-
- Needs of muticonjugate adaptive optics and ELT
- CN2 and v profiles monitoring in real time
- In 3-D ?
- Time for forecasting CN2(x,y,h) and v(x,y,h) ?
- Dual approach measurements forecasting