ME 201 Engineering Mechanics: Statics - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

ME 201 Engineering Mechanics: Statics

Description:

Find Magnitude of Position Vector. Find Unit Vector. Find Force Vector. Example Problem ... 2-Magnitude. 3-Unit vector. 4-Force vector. 5-Direction Cosines. A(0, ... – PowerPoint PPT presentation

Number of Views:247
Avg rating:3.0/5.0
Slides: 18
Provided by: garths
Category:

less

Transcript and Presenter's Notes

Title: ME 201 Engineering Mechanics: Statics


1
ME 201Engineering Mechanics Statics
  • Chapter 2 Part C
  • 2.7 Position Vectors
  • 2.8 Force Vector Directed along a Line
  • 2.9 Dot Product

2
Position Vectors
  • The position vector r is defined as a fixed
    vector which locates a point in space relative to
    another point
  • Distance and direction between 2 points
  • Useful in formulating force vectors and finding
    the moment of a force

3
Position Vectors
  • Simple Case from the origin
  • r x i y j z k

Z
r
z
y
Y
x
X
4
Position Vectors
  • General Case any 2 points A B
  • the i, j, k components of the position vector
    r may be formed by taking the coordinates of the
    head of vector B and subtracting from them the
    corresponding coordinates of the tail A.

5
Position Vectors
  • General Case any 2 points A B
  • rAB (xB-xA) i (yB-yA) j (zB-zA) k

Z
B
rAB
A
Y
X
6
Vector/Scalar Review
  • VECTOR
  • Unit Vector U
  • Position Vector r
  • Force Vector F, T
  • Moment - M
  • SCALAR
  • Magnitude
  • Length
  • Component

7
Steps to Formulate a Force Vector
  • Find Position Vector
  • rAB (xB-xA) i (yB-yA) j (zB-zA) k
  • Find Magnitude of Position Vector
  • Find Unit Vector
  • Find Force Vector

8
Example Problem
z
  • Given
  • F 70 lb.
  • Find
  • F in vector form

30 m
B
A
y
8 m
6 m
12 m
x
9
Example Problem Solution
z
A
30 m
B
y
8 m
6 m
12 m
  • Solution
  • 1-Position vector
  • 2-Magnitude
  • 3-Unit vector
  • 4-Force vector
  • 5-Direction Cosines

A(0,0,30) B(12,-8,6)
10
Dot Product
  • Dot Product is a scalar operation used in
    projecting vectors onto a given axis
  • A B A B cos ?
  • Where 0º ? 180º

A
?
B
11
Dot ProductLaws of Operation
  • Commutative Law
  • A B B A
  • Multiplication by Scalar
  • a(A B) (aA) B A (aB) (A B)a
  • Distributive Law
  • A (B D) (A B) (A D)

12
Dot Productof Cartesian Vector
  • i i (1) (1) cos 0 1
  • i j (1) (1) cos 90 0
  • i k (1) (1) cos 90 0
  • j j (1) (1) cos 0 1
  • j k (1) (1) cos 90 0
  • k k (1) (1) cos 0 1

13
Dot ProductCartesian Vector Formulation
  • A B (Axi Ayj Azk) (Bxi Byj Bzk)
  • AxBx(i i) AxBy(i j) AxBz(i k)
  • AyBx(j i) AyBy(j j) AyBz(j k)
  • AzBx(k i) AzBy(k j) AzBz(k k)
  • AxBx AyBy AzBz

14
Dot ProductCartesian Vector Formulation
  • A B AxBx AyBy AzBz
  • A B cos ?

15
Projection of a Vector onto a Given Axis
  • The scalar projection of A along a line is
    determined from the dot product of A and the unit
    vector U which defines the direction of the line
  • A U A U cos ?
  • A cos ?
  • AU

A
?
U
AU
16
Example Problem
  • Given
  • F 300 j N
  • Find
  • FAB

z
B
F
3 m
A
y
2 m
6 m
x
17
Example Problem Solution
z
(2,6,3)
B
F
(0,0,0)
3 m
A
y
2 m
6 m
  • Solution

x
Should we need it in Cartesian Vector form
Write a Comment
User Comments (0)
About PowerShow.com