Title: Lee Distance and Topological Properties of kary ncubes
1Lee Distance and Topological Propertiesof k-ary
n-cubes
- Interconnection Networks
- ???e??d?? Te?d?s???
- ?.?. 99
2??sa????
- ???tas? t?p???????? ?d??t?t?? t?? k-ary n-cube
(Qnk) µe ß?s? t?? Lee distance. - F?s??? µet???? ??a t?? ???sµ? ?a? t? µe??t? t???
s?µf??a µe t??? s????afe??. - ??et??eta? ? a?t?st????s? d?af???? ???f?? se Qnk.
- ???ß??µa t?p???????? t?p???t?s?? p????.
3Ge???? - ???sµ??
- ? s???e???µ??? d?µ? ???s?µ?p??e?ta? se concurrent
systems - ?e????? d?af?????? e??s?se??
- ?p?te?esµat???? ?p?????sµ?? ??. ???eß?a?.
- ?n CPUs µe µ??µ? 2n s??d?se??.
- ?p?stas? Lee
- A n-??f?? d????sµa ? ß?s??.
- Lee weight
- Lee distance A,B WL(A-B)
- Bitwise difference mod k.
4Ge???? ???sµ?? 2
- G?a ?2,3 Dh(A,B)DL(A,B).
- ?gt3, DL(A,B)gt Dh(A,B).
- ??a? Qnk e??a? 2n ta?t???? ???f?? µe ?n ??µß???.
- ?eta?? ?,? ??µß?? ?p???e? a?µ? a? DL(A,B)1.
- ?? s??t?µ?te?? µ???p?t? µeta?? d?? ??µß?? ??e?
µ???? ?s? µe t? Lee ap?stas?.
5?d??t?te? Qnk
- ???µet??? Dnfloor(k/2).
- ??µ??
- Lnkn.
- ?p?f??e?a
- ?????
- ?a?tes?a?? ????µe?? ??????.
- ?????te??? ??ß?? a?ad??µ???.
6???a µ???p?t?a
- Fault-tolerance.
- Te???µa
- G?a ?,? ????f?? se ??a Qnk ?a? lDL(A,B),
hDh(A,B), WiDL(Ai,Bi), 0ltiltn-1 µe ?gt2
?p?????? 2n ???a µeta?? t??? pa??????a µ???p?t?a
e? t?? ?p???? h µ????? l, 2(n-h) µ????? l2 ?a?
??a ???e Wigt0 ?p???e? µ???p?t? µ????? lk-2Wi.
?a??de??µa ?a 6 ???a µeta?? t??? pa??????a
µ???p?t?a µeta?? t?? 013 ?a? t?? 034 st? Q35.
7??t?st????se?? - ?a?t?????
- ?????? µ????? ?, ??n e??a? ?????? Hamilton.
- ?p????µe ?a pa?????µe ????? Hamilton µ?s? Gray
code. - ?atas?e?ast??? d?ad??as?a
- ?p????µe ?a p????µe ?a? t?? f-1 a? ??e?aste?.
8??t?st????se?? ?a?t????? 2
- ???s?µ?p????ta? t? p??????µe?? ?e???µa µp????µe
?a pa?????µe ????? Hamilton ??a ?p???d?p?te Qnk
ep?t???????ta? t?? a?t?st????s?. - ?a??de??µa efa?µ???? t?? ?e???µat?? se ??a Q24.
????µe 4 R d??t? se ???e Qnk ????µe ??????
µeta?? t??? k-ary da?t?????? se ???e d??stas?.
9??t?st????se?? ?a?t????? 3
- ?p?s?? ?p???e? ?a? ? f ??a pa?a???? Gray code.
- ???a? a?a??ast???
-
- ??a
-
- ? ??t??? ????µe Hamiltonian ?????.
- ?????? Hamiltonian µ???p?t?.
10??t?st????se?? - ????µa
- ?fa?µ??eta? d?ad????? µet???µas?a t?? ????f?? µe
s?????s? se ???e d??stas?. - ? a?t?st????s? ep?t?????eta? ?a? p??? µ?s? Gray
code.
11??t?st????se?? - ?pe???ß??
- ??t?st????s? t?? Qn se Qceiling(n/2)4.
- ????e?µ???? ?a ???e? ? a?t?st????s? a????????µe
ta e??? - ?st? x ??µß?? (anan-1a1) t?? Qn . ?? t? n e??a?
pe??tt? µet???µ????µe t? x se (0anan-1a1). - ??te ? x st?? Qceiling(n/2)4 ??e? d?e????s?
(bjbj-1b1) µe jceiling(n/2), bif(a2ia2i-1)
1ltiltj µe t?? f ?p?? ????eta? st? ??µµa 1.
12??t?st????se?? ?pe???ß?? 2
13??p???t?s? p????
- ???ß??µa d?aµ???asµ?? pe?????sµ???? a???µ?? p????
se ??a s?st?µa ?ste ?a ?p???e? ?s?t?µ? p??sßas?
ap? ?????. - j-adjacency ???e ??µß?? e?te ??e? t?? p???, e?te
?e?t??e?e? µe j ??µß??? p?? ????? t?? p??? ?a?
de? ?p?????? d?? ?e?t?????? ??µß?? p?? ?a ?????
t?? p??? ?a? ?? d??. - t-embedding ???e ??µß?? p?? de? ??e? t?? p???
??e? resource distance 1 ?a? de? ?p?????? ??µß??
p?? ?a µ?? ????? t?? p??? µe µeta?? t??? ap?stas?
2t1. - jt1 t? p??ß??µa e??a? ?d?? ?a? st?? d??
pe??pt?se??.
14??p???t?s? p???? 2
- ???s????s? t?? p??ß??µat?? µe error correcting
code se Qn. - Hamming single error correction, perfect.
- ??? d?s???? ? a?t?st????s? µe ??d??e? se Qnk µe
t?? ap?stas? Lee ?? ??d??a. - ??s? µe Lee distance single error correcting
codes st? 1-adjacency p??ß??µa.
Perfect embedding nonresource nodes in Qn have
resource distance 1 and no two nodes are adjacent.
15??p???t?s? p???? 3
- ????d?? ?st? ? pe??tt?? a???a??? ?a? n(kr-1)/2
??a a???a?? r. O Lee ??d??a? p????pte? ?? e??? - ?st? ? rxn p??a?a? (parity check matrix).
- ?? st??e? t?? ? ap?te????ta? ap? µ? µ?de????
d?a??sµata rx1 Vivi,1vi,2vi,rT ?ste
0ltvi,jltfloor(k/2) µe j t?? µ????te?? a???a??
?ste vi,j d??f??? t?? 0. - ??te ??a n-??f?? d????sµa ? ß?s?? ? e??a?
??d??????? a? ?a? µ??? a? ???0.
?a??de??µa ?p?????? 510 ????????a d?a??sµata
p?? s??µat????? t?? ??d??a µa?