Lee Distance and Topological Properties of kary ncubes - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Lee Distance and Topological Properties of kary ncubes

Description:

'Lee Distance and Topological Properties. of k-ary n-cubes' Interconnection Networks ... Lee distance A,B WL(A-B) Bitwise difference mod k. Ge???? ???s ?? [2] ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 16
Provided by: Con667
Category:

less

Transcript and Presenter's Notes

Title: Lee Distance and Topological Properties of kary ncubes


1
Lee Distance and Topological Propertiesof k-ary
n-cubes
  • Interconnection Networks
  • ???e??d?? Te?d?s???
  • ?.?. 99

2
??sa????
  • ???tas? t?p???????? ?d??t?t?? t?? k-ary n-cube
    (Qnk) µe ß?s? t?? Lee distance.
  • F?s??? µet???? ??a t?? ???sµ? ?a? t? µe??t? t???
    s?µf??a µe t??? s????afe??.
  • ??et??eta? ? a?t?st????s? d?af???? ???f?? se Qnk.
  • ???ß??µa t?p???????? t?p???t?s?? p????.

3
Ge???? - ???sµ??
  • ? s???e???µ??? d?µ? ???s?µ?p??e?ta? se concurrent
    systems
  • ?e????? d?af?????? e??s?se??
  • ?p?te?esµat???? ?p?????sµ?? ??. ???eß?a?.
  • ?n CPUs µe µ??µ? 2n s??d?se??.
  • ?p?stas? Lee
  • A n-??f?? d????sµa ? ß?s??.
  • Lee weight
  • Lee distance A,B WL(A-B)
  • Bitwise difference mod k.

4
Ge???? ???sµ?? 2
  • G?a ?2,3 Dh(A,B)DL(A,B).
  • ?gt3, DL(A,B)gt Dh(A,B).
  • ??a? Qnk e??a? 2n ta?t???? ???f?? µe ?n ??µß???.
  • ?eta?? ?,? ??µß?? ?p???e? a?µ? a? DL(A,B)1.
  • ?? s??t?µ?te?? µ???p?t? µeta?? d?? ??µß?? ??e?
    µ???? ?s? µe t? Lee ap?stas?.

5
?d??t?te? Qnk
  • ???µet??? Dnfloor(k/2).
  • ??µ??
  • Lnkn.
  • ?p?f??e?a
  • ?????
  • ?a?tes?a?? ????µe?? ??????.
  • ?????te??? ??ß?? a?ad??µ???.

6
???a µ???p?t?a
  • Fault-tolerance.
  • Te???µa
  • G?a ?,? ????f?? se ??a Qnk ?a? lDL(A,B),
    hDh(A,B), WiDL(Ai,Bi), 0ltiltn-1 µe ?gt2
    ?p?????? 2n ???a µeta?? t??? pa??????a µ???p?t?a
    e? t?? ?p???? h µ????? l, 2(n-h) µ????? l2 ?a?
    ??a ???e Wigt0 ?p???e? µ???p?t? µ????? lk-2Wi.

?a??de??µa ?a 6 ???a µeta?? t??? pa??????a
µ???p?t?a µeta?? t?? 013 ?a? t?? 034 st? Q35.
7
??t?st????se?? - ?a?t?????
  • ?????? µ????? ?, ??n e??a? ?????? Hamilton.
  • ?p????µe ?a pa?????µe ????? Hamilton µ?s? Gray
    code.
  • ?atas?e?ast??? d?ad??as?a
  • ?p????µe ?a p????µe ?a? t?? f-1 a? ??e?aste?.

8
??t?st????se?? ?a?t????? 2
  • ???s?µ?p????ta? t? p??????µe?? ?e???µa µp????µe
    ?a pa?????µe ????? Hamilton ??a ?p???d?p?te Qnk
    ep?t???????ta? t?? a?t?st????s?.
  • ?a??de??µa efa?µ???? t?? ?e???µat?? se ??a Q24.

????µe 4 R d??t? se ???e Qnk ????µe ??????
µeta?? t??? k-ary da?t?????? se ???e d??stas?.
9
??t?st????se?? ?a?t????? 3
  • ?p?s?? ?p???e? ?a? ? f ??a pa?a???? Gray code.
  • ???a? a?a??ast???
  • ??a
  • ? ??t??? ????µe Hamiltonian ?????.
  • ?????? Hamiltonian µ???p?t?.

10
??t?st????se?? - ????µa
  • ?fa?µ??eta? d?ad????? µet???µas?a t?? ????f?? µe
    s?????s? se ???e d??stas?.
  • ? a?t?st????s? ep?t?????eta? ?a? p??? µ?s? Gray
    code.

11
??t?st????se?? - ?pe???ß??
  • ??t?st????s? t?? Qn se Qceiling(n/2)4.
  • ????e?µ???? ?a ???e? ? a?t?st????s? a????????µe
    ta e???
  • ?st? x ??µß?? (anan-1a1) t?? Qn . ?? t? n e??a?
    pe??tt? µet???µ????µe t? x se (0anan-1a1).
  • ??te ? x st?? Qceiling(n/2)4 ??e? d?e????s?
    (bjbj-1b1) µe jceiling(n/2), bif(a2ia2i-1)
    1ltiltj µe t?? f ?p?? ????eta? st? ??µµa 1.

12
??t?st????se?? ?pe???ß?? 2
  • ?a??de??µa

13
??p???t?s? p????
  • ???ß??µa d?aµ???asµ?? pe?????sµ???? a???µ?? p????
    se ??a s?st?µa ?ste ?a ?p???e? ?s?t?µ? p??sßas?
    ap? ?????.
  • j-adjacency ???e ??µß?? e?te ??e? t?? p???, e?te
    ?e?t??e?e? µe j ??µß??? p?? ????? t?? p??? ?a?
    de? ?p?????? d?? ?e?t?????? ??µß?? p?? ?a ?????
    t?? p??? ?a? ?? d??.
  • t-embedding ???e ??µß?? p?? de? ??e? t?? p???
    ??e? resource distance 1 ?a? de? ?p?????? ??µß??
    p?? ?a µ?? ????? t?? p??? µe µeta?? t??? ap?stas?
    2t1.
  • jt1 t? p??ß??µa e??a? ?d?? ?a? st?? d??
    pe??pt?se??.

14
??p???t?s? p???? 2
  • ???s????s? t?? p??ß??µat?? µe error correcting
    code se Qn.
  • Hamming single error correction, perfect.
  • ??? d?s???? ? a?t?st????s? µe ??d??e? se Qnk µe
    t?? ap?stas? Lee ?? ??d??a.
  • ??s? µe Lee distance single error correcting
    codes st? 1-adjacency p??ß??µa.

Perfect embedding nonresource nodes in Qn have
resource distance 1 and no two nodes are adjacent.
15
??p???t?s? p???? 3
  • ????d?? ?st? ? pe??tt?? a???a??? ?a? n(kr-1)/2
    ??a a???a?? r. O Lee ??d??a? p????pte? ?? e???
  • ?st? ? rxn p??a?a? (parity check matrix).
  • ?? st??e? t?? ? ap?te????ta? ap? µ? µ?de????
    d?a??sµata rx1 Vivi,1vi,2vi,rT ?ste
    0ltvi,jltfloor(k/2) µe j t?? µ????te?? a???a??
    ?ste vi,j d??f??? t?? 0.
  • ??te ??a n-??f?? d????sµa ? ß?s?? ? e??a?
    ??d??????? a? ?a? µ??? a? ???0.

?a??de??µa ?p?????? 510 ????????a d?a??sµata
p?? s??µat????? t?? ??d??a µa?
Write a Comment
User Comments (0)
About PowerShow.com