Efficient Triggering with the LHCb Detector for Precise CP Measurements

About This Presentation
Title:

Efficient Triggering with the LHCb Detector for Precise CP Measurements

Description:

L0: pileup system. Calculate vertex for all combinations ... Branching ratios of rare decays might be enhanced by the presence of new particles in the loop... –

Number of Views:58
Avg rating:3.0/5.0
Slides: 19
Provided by: tun5
Category:

less

Transcript and Presenter's Notes

Title: Efficient Triggering with the LHCb Detector for Precise CP Measurements


1
Efficient Triggering with the LHCb Detector for
Precise CP Measurements
8th International Conference on Advanced
Technology and Particle Physics 6 October
2003 Como, Italy
  • LHCb detector
  • Changes in geometry since Technical Proposal
    (98)
  • Technical Design Report Sep 2003
  • Trigger
  • Technical Design Report Sep 2003
  • Physics performance

Niels Tuning (CERN) on behalf of the LHCb
collaboration
2
LHCb A Large Hadron Collider Beauty Experiment
for Precision Measurements of CP-Violation and
Rare Decays
  • Measure B-decays
  • CP violation in Standard Model
  • New particles in loop diagrams?
  • Additional CP violation!
  • Branching fraction of rare decays
  • Colliding beams
  • 7 TeV x 7 TeV pp (every 25 ns)
  • L 2.1032 cm-2 s-1
  • ?(visible) 68 mb
  • ?(pp?b?bX) 0.5 mb
  • ? 1012 b?b / year
  • BR(interesting ch.) 10-4 10-9

3
The LHCb detector
Trigger Tracker p for trigger
Tracking Stations p of charged particles
Calorimeters PID e,?, ?0 Trigger on hadr.
RICH PID K,? separation
VELO primary vertex impact parameter displaced
vertex
Muon System
4
Detectors in the Trigger
VELO
  • Vertex Locator
  • 220 ?m n-on-n Si
  • Pitch 40-100 ?m
  • R-? geometry
  • 170k channels
  • Pileup System
  • 2 VELO disks

16 mm
84 mm
21 stations, 100cm
? sensor stereo angle 10o,-20o
R sensor 4 ? sectors
  • Trigger Tracker
  • Full Si tracker
  • 4 layers (x,u 30 cm gap v,x)
  • Wide pitch 200 ?m
  • 180k channels
  • Placed in front of magnet

5
Trigger Overview
40 MHz
L0 (4 ?s)
  • L0 high PT
  • CalorimeterMuon
  • Fully synchronous on custom boards
  • L1 high PT impact parameter
  • VELOTT
  • Max. latency 52.4 ms
  • (L1 buffer size 58254 events)
  • Software trigger
  • HLT high PT displaced vertex B-mass
  • Full detector information available

1 MHz
L1 (1 ms)
40 kHz
HLT (14 ms)
6
L0 pileup system
  • Calculate vertex for all combinations of 2 points
    a and b.
  • Find highest peak ( prim.vtx)
  • Remove the hits and find 2nd peak
  • Veto if peakgtthreshold
  • ?(Zvtx) ? 2.8 mm, ?(beam) ? 53 mm

7
L0
  • High-pT ?, e, ? and hadrons with Calorimeter and
    Muon system

Muons
Fraction of events
8
L1 1 MHz ? 40 kHz
45o slice
  • 2d tracks in VELO
  • 80 / event
  • Vertex
  • ?z 60 ?m
  • High imp.par 3d tracks
  • pT information
  • L0 muons
  • TT dp/p 30

J/?(??-)
9
L1 HLT
  • pT information from TT
  • dp/p 30
  • 2 high-IP tracks with highest pT
  • pT information from T
  • dp/p 0.6
  • Confirm L1 decision
  • down to 20kHz
  • 95 efficiency
  • In only 4 ms
  • 14 ms for the rest
  • L1HLT implemented on same CPU farm
  • 1000 CPUs for L1, 800 for HLTreconstruction
  • HLT runs in the background to limit deadtime.

10
Trigger performance
  • Good efficiencies for useful events
  • L0 50 90
  • L1 50 70
  • Timing is OK 2007
  • L0 3.5 ?s (4 ?s)
  • L1 8 ms (1 ms, max. 50 ms)

11
What do we do with the triggered events?
12
CP violation
  • Mixing
  • Small in B0 system, 1-p/q10-3
  • BH0 pB0gtq?B0gt
  • LHCb B0s?Ds-?, B0?D-?.
  • Decay
  • Interference between diagrams with same final
    states (e.g. tree, penguin)
  • e.g. (B?f)-(B-?f -) (NB no mixing)
  • Interference between (B0?f) and (B0??B0 ?f)
  • ffCP LHCb B0?J/?KS, B0s?J/??, B0???.
  • f?fCP LHCb B0s?DSK , B0?D?, B0?D0K.
  • Present status
  • sin(2?)0.731 ? 0.055 (B?J/?KS from ee-)
  • sin(2?)0.695 ? 0.055 (from ?md and Vub)
  • ? 64.5o ?7o (combining all measurements)
  • Measuring CKM angle ? in LHCb
  • B0s?D/-sK-/
  • Only tree diagrams theoretically clean.
  • B0??-?, B0s?K-K
  • Penguin contributions solved with SU(3) symm.
  • B0?D0K0,?D0K0
  • Sensitive to new physics in D0,?D0 mixing

13
Rare decays
  • Branching ratios of rare decays might be enhanced
    by the presence of new particles in the loop
  • BR 10-5 (104 selected events/year)
  • B0?K0?
  • B0???
  • BR 10-6 (103 sel. events/year)
  • B0???- K0
  • BR 10-9 (101 sel. events/year)
  • B0s???-

14
Event selection
. B0s?D-sK
. B0s?D-s?
  • Variables
  • pT, impact parameter, PID.
  • Decay length, vertex, mass constraints.
  • B-mass, pointing.

15
Yields
  • Efficiencies
  • Acceptance x Reconstruction x Selection x Trigger
  • 10 x 80 x 20 x
    35 0.5
  • Branching ratios 10-5
  • Yields 1012 bb x 0.005 x 10-5 50k

Typically
16
CP measurement
  • Extract CP parameters from fast simulation
  • Given the resolutions, yields and background from
    full simulation
  • Examples
  • ACP(B0?J/?KS)
  • ACP( B0s?DsK-)

?f
17
LHCb physics reach in 1 year
  • Excellent ? sensitivity
  • Twice current BABARBELLE sensitivity
  • Various ? measurements to disentangle new physics
  • Rare decay
  • ?(B0?K0?) 2 higher than SM?
  • ? 3? significance

18
Conclusions
  • The LHCb trigger
  • reduces the rate from 40 MHz to 200 Hz (5.10-6
    !),
  • with high efficiencies (20-70),
  • and within the tight time budgets.
  • Precise measurements of CKM parameters
  • with many different approaches,
  • to disentangle new physics.
  • Precise measurements of branching ratios
  • where new physics could show up.
Write a Comment
User Comments (0)
About PowerShow.com