Generating Permutations - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Generating Permutations

Description:

... Permutations. Bottom Up. Johnson-Trotter. Lexicographic. Bottom Up Permutations. Given the (n 1) ... Step 1: 1 2, 2 1. Step 2: 1 2 3, 1 3 2, 3 1 2; 3 2 1, 2 ... – PowerPoint PPT presentation

Number of Views:1345
Avg rating:3.0/5.0
Slides: 29
Provided by: otter1
Category:

less

Transcript and Presenter's Notes

Title: Generating Permutations


1
Generating Permutations
  • Bottom Up
  • Johnson-Trotter
  • Lexicographic

2
Bottom Up Permutations
  • Given the (n1)! permutations of 1,,n1,
    insert n into each position of each of them.
  • This generates n! permutations of 1,,n.
  • Base step 1
  • Step 1 1 2, 2 1
  • Step 2 1 2 3, 1 3 2, 3 1 2 3 2 1, 2 3 1, 2
    1 3
  • Step 3 1234, 1243, 1423, 4123 4132, 1432,
    1342, 1324
  • 3124, 3142, 3412, 4312 4321, 3421,
    3241, 3214
  • 2314, 2341, 2431, 4231 4213, 2413,
    2143, 2134
  • Notice the ordering This is called minimal
    change.

3
Mobile Elements forMinimal Change Algorithm
  • If each element has an associated direction, then
    we call those elements mobile that are facing
    smaller adjacent elements.
  • ????
  • 3 2 4 1
  • In this example, 3 4 are mobile, while 1 2
    are not.
  • We start out with the increasing permutation,
    with each element facing left.

4
Johnson-Trotter Algorithm
  • INPUT a positive integer n
  • OUTPUT list of all permutations of 1,,n
  • initialize first permutation
  • while ? a mobile element do
  • find the largest mobile element k
  • swap k and the adjacent element it is facing
  • reverse the direction of all elements larger than
    k
  • print current permutation

5
Example
1 2 3 4
  • ????
  • 1 2 3 4

6
Example
1 2 3 4 1 2 4 3
  • ????
  • 1 2 4 3

7
Example
1 2 3 4 1 2 4 3 1 4 2 3
  • ????
  • 1 4 2 3

8
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3
  • ????
  • 4 1 2 3

9
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2
  • ????
  • 4 1 3 2

10
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2
  • ????
  • 1 4 3 2

11
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2
  • ????
  • 1 3 4 2

12
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4
  • ????
  • 1 3 2 4

13
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4
  • ????
  • 3 1 2 4

14
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2
  • ????
  • 3 1 4 2

15
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2
  • ????
  • 3 4 1 2

16
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2
  • ????
  • 4 3 1 2

17
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1
  • ????
  • 4 3 2 1

18
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1
  • ????
  • 3 4 2 1

19
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1 3 2 4 1
  • ????
  • 3 2 4 1

20
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1 3 2 4 1 3 2 1 4
  • ????
  • 3 2 1 4

21
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1 3 2 4 1 3 2 1 4 2 3 1 4
  • ????
  • 2 3 1 4

22
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1 3 2 4 1 3 2 1 4 2 3 1 4 2 3 4 1
  • ????
  • 2 3 4 1

23
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1 3 2 4 1 3 2 1 4 2 3 1 4 2 3 4 1
  • ????
  • 2 4 3 1

2 4 3 1
24
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1 3 2 4 1 3 2 1 4 2 3 1 4 2 3 4 1
  • ????
  • 4 2 3 1

2 4 3 1 4 2 3 1
25
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1 3 2 4 1 3 2 1 4 2 3 1 4 2 3 4 1
  • ????
  • 4 2 1 3

2 4 3 1 4 2 3 1 4 2 1 3
26
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1 3 2 4 1 3 2 1 4 2 3 1 4 2 3 4 1
  • ????
  • 2 4 1 3

2 4 3 1 4 2 3 1 4 2 1 3 2 4 1 3
27
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1 3 2 4 1 3 2 1 4 2 3 1 4 2 3 4 1
  • ????
  • 2 1 4 3

2 4 3 1 4 2 3 1 4 2 1 3 2 4 1 3 2 1 4 3
28
Example
1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1
3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 4 3
2 1 3 4 2 1 3 2 4 1 3 2 1 4 2 3 1 4 2 3 4 1
  • ????
  • 2 1 3 4

2 4 3 1 4 2 3 1 4 2 1 3 2 4 1 3 2 1 4 3 2 1 3 4
Write a Comment
User Comments (0)
About PowerShow.com