Large-Scale Molecular Dynamics Simulations - PowerPoint PPT Presentation

About This Presentation
Title:

Large-Scale Molecular Dynamics Simulations

Description:

LargeScale Molecular Dynamics Simulations – PowerPoint PPT presentation

Number of Views:443
Avg rating:3.0/5.0
Slides: 40
Provided by: CCL84
Category:

less

Transcript and Presenter's Notes

Title: Large-Scale Molecular Dynamics Simulations


1
Large-Scale Molecular Dynamics Simulations of
Materials on Parallel Computers
Aiichiro Nakano Priya Vashishta Concurrent
Computing Laboratory for Materials
Simulations Department of Computer
Science Department of Physics
Astronomy Louisiana State University Email
nakano_at_bit.csc.lsu.edu URL
www.cclms.lsu.edu
VII International Workshop on Advanced Computing
Analysis Techniques in Physics
Research Organizers Dr. Pushpalatha Bhat Dr.
Matthias Kasemann October 19, 2000, Fermilab, IL
2
Outline
1. Scalable atomistic-simulation
algorithms 2. Multidisciplinary hybrid-simulation
algorithms 3. Large-scale atomistic simulation of
nanosystems gt Nanophase nanocomposite
materials gt Nanoindentation nano-impact
damage gt Epitaxial colloidal quantum
dots 4. Ongoing projects
3
Concurrent Computing Laboratory for Materials
Simulations
  • Faculty (Physics, Computer Science)
  • Rajiv Kalia, Aiichiro Nakano, Priya Vashishta
  • Postdocs/research faculty
  • Martina Bachlechner, Tim Campbell, Hideaki
    Kikuchi,
  • Sanjay Kodiyalam, Elefterios Lidorikis, Fuyuki
    Shimojo,
  • Laurent Van Brutzel, Phillip Walsh
  • Ph.D. Students
  • Gurcan Aral, Paulo Branicio, Jabari Lee, Xinlian
    Liu,
  • Brent Neal, Cindy Rountree, Xiaotao Su,
  • Satavani Vemparala, Troy Williams
  • Visitors
  • Elisabeth Bouchaud (ONERA), Antonio da Silva
    (São Paulo),
  • Simon de Leeuw (Delft), Ingvar Ebbsjö (Uppsala),
  • Hiroshi Iyetomi (Niigata), Shuji Ogata
    (Yamaguchi),
  • Jose Rino (São Carlos)

4
Education Dual-Degree Opportunity
Ph.D. in physics MS from computer science in
5 years Broad career options (APS News,
August/September, 97) Synergism between HPCC
(MS) application (Ph.D.) research Best
dissertation award (Andrey Omeltchenko, 97) MS
publication (Parallel Comput., IEEE CSE, Comput.
Phys. Commun., etc.) Internshipdeliverable-ori
ented approach to real-world problems provides
excellent job training Boeing, NASA Ames,
Argonne Natl Lab. (Web-based simulation/ experi
mentation, Alok Chatterjee, Enrico Fermi Scholar,
99) International collaboration Niigata,
Yamaguchi (NSF/U.S.-Japan), Studsvik (Sweden),
Delft (The Netherlands), São Carlos
(Brazil) NSF Graduate Research Traineeship
Program New program Ph.D. biological sciences
MS computer science
5
International Collaborative Course
T3E
SP
Origin
The Netherlands Delft Univ.
USA Louisiana State Univ.
Alpha cluster
Video Conferencing
ImmersaDesk
VR workbench
Virtual Classroom
Chat Tool
Whiteboard Tool
Web-based course involving LSU, Delft Univ. in
the Netherlands, Niigata Univ. in Japan,
Federal Univ. of Sao Carlos in Brazil
6
DoD Challenge Applications Award 1.3 million
node-hours in 2000/2001
7
1. Scalable Atomistic-Simulation Algorithms
8
Atomistic Simulation of Nanosystems
Peta (1015) flop computers ? direct atomistic
simulations Scalable applications ?
multiresolution algorithms are key
9
Molecular Dynamics Simulation
Newtons equations of motion Many-bo
dy interatomic potential gt 2-body Coulomb
steric repulsion charge-dipole
dipole-dipole gt 3-body Bond bending
stretching SiO2, Si3N4, SiC, GaAs, AlAs,
InAs, etc.
10
Validation of Interatomic Potentials
Neutron static structure factor
Phonon dispersion
amorphous
amorphous SiO2
Si3N4
Johnson et al. (83)
Yoshida et al. (93)
GaAs
SiC
High-pressure phase transition
11
Space-time Multiresolution Algorithm
Challenge 1 Scalability to billion-atom systems
Scaled speedup on Cray T3E
1.02 billion-atom MD for SiO2 26.4 sec/step on
1,024 Cray T3E processors at NAVO-MSRC, Parallel
efficiency 0.97
12
Wavelet-based Load Balancing
Challenge 2 Load imbalance on a parallel computer
Irregular data-structures/ processor-speed
Map
Parallel computer
Computational-space decomposition in curved
space
Wavelet representation speeds up optimization of
?(x)
13
Fractal-based Data Compression
Challenge 3 Massive data transfer via OC-3 (155
Mbps) 75 GB/frame of data for a 1.5-billion-atom
MD!
Scalable encoding Spacefilling curvestore
relative positions Result I/O size, 50
Bytes/atom ? 6 Bytes/atom
14
Variable-charge MD
Challenge 4 Complex realismchemical reactions
Electronegativity equalization Determine
atomic charges at every MD stepO(N3)! (Streitz
Mintmire, 94) i) Fast multipole method
ii) q(init)(t?t) q(t) ? O(N) Multilevel
preconditioned conjugate gradient
(MPCG) Sparse, short-range interaction
matrix as a preconditioner 20 speed
up Enhanced data locality parallel
efficiency, 0.93 ? 0.96 for 26.5M-atom Al2O3 on
64 SP2 nodes
15
Linear-Scaling Quantum-Mechanical Algorithm
Challenge 5 Complexity of ab initio QM
calculations
Density functional theory (DFT) (Kohn, 98
Nobel Chemistry Prize)O(CN )?O(N3 )
Pseudopotential (Troullier Martins, 91)
Higher-order finite-difference (Chelikowsky,
Saad, et al., 94) Multigrid acceleration
(Bernholc, et al., 96) Spatial
decomposition O(N) algorithm (Mauri Galli,
94) Unconstrained minimization Localized
orbitals Parallel efficiency 96 for a
22,528-atom GaAs system on 1,024 Cray T3E
processors
16
Scalable MD/QM Algorithm Suite
Design-space diagram on 1,024 Cray T3E processors
On 1,280 IBM SP3 processors 8.1-billion-atom
MD of SiO2 140,000-atom DFT of GaAs
17
Immersive Interactive Visualization
Last Challenge Sequential bottleneck of graphics
pipeline
Octree data structure for fast visibility
culling Multiresolution hybrid (atom,
texture) rendering Parallel preprocessing/predic
tive prefetch Graph-theoretical data mining of
topological defects
18
2. Multidisciplinary Hybrid-Simulation Algorithms
19
Multiscale Simulation
Lifetime prediction of safety-critical
micro-electro-mechanical systems (MEMS)
R. Ritchie, Berkeley
Engineering mechanics experimentally validated
gt 1 mm Atomistic simulation possible lt 0.1 mm
Bridging the length-scale gap by seamlessly
coupling Finite-element (FE) calculation based
on elasticity Atomistic molecular-dynamics
(MD) simulation Ab initio quantum-mechanical
(QM) calculation.
20
Hybrid QM/MD Algorithm
MD simulation embeds a QM cluster described by a
real-space multigrid-based density functional
theory
Additive hybridization Reuse of existing QM
MD codes
Handshake atoms Seamless coupling of QM MD
systems
FE/MD/Tight-binding QM (Abraham, Broughton,
Bernstein, Kaxiras, 98)
21
Hybrid MD/FE Algorithm
FE nodes MD atoms coincide in the handshake
region Additive hybridization
22
Oxidation on Si Surface
MD
FE
QM cluster
MD Si
QM O
QM Si
Handshake H
Dissociation energy of O2 on a Si (111) surface
dissipated seamlessly from the QM cluster
through the MD region to the FE region
23
3. Large-Scale Atomistic Simulation of
Nanosystems
24
Fracture Simulation Experiment
Microcrack coalescence
Ti3Al alloy E. Bouchaud
Si3N4
Multiple branching
Glass K. Ravi-Chandar
Graphite
25
Fracture Energy of GaAs 100-million-atom MD
Simulation
256 Cray T3E processors at DoDs NAVO-MSRC
1.3 ?m
Good agreement with experiments
Messmer (81) Michot (88)
26
Si3N4-SiC Fiber Nanocomposite
1.5-billion-atom MD on 1,280 IMB SP3 processors
at NAVO-MSRC
Color code Si3N4 SiC SiO2
0.3 mm
Fracture surfaces in ceramic-fiber
nanocomposites Toughening mechanisms?
27
Nanoindentation on Silicon Nitride Surface
Use Atomic Force Microscope (AFM) tip for
nanomechanical testing of hardness
10 million atom MD at ERDC-MSRC
Highly compressive/tensile local stresses
28
Indentation Fracture Amorphization
Indentation fracture at indenter diagonals
Anisotropic fracture toughness
Amorphous pile-up at indenter edges
lt0001gt
29
Hypervelocity Impact Damage
Design of damage-tolerant spacecraft
Diamond impactor
Diamond coating
Meteoroid detector on Mir Orbitor
Impact velocity 8 - 15 km/s
Impact graphitization
Reactive bond-order potential (Brenner, 90)
30
Impact-Velocity Sensitivity
Crossover from quasi-elastic to evaporation at
10 km/s
time
31
Epitaxially Grown Quantum Dots
-
Substrate-encoded size-reducing epitaxy
GaAs (001) substrate lt100gt square mesas
A. Madhukar (USC)
32
Stress Domains in Si3N4/Si Nanopixels
27 million atom MD simulation
Si3N4
Si
Stress domains in Si due to an amorphous Si3N4
film
Stress well in Si with a crystalline Si3N4 film
due to lattice mismatch
33
Colloidal Semiconductor Quantum Dots
  • Applications
  • LED, display
  • Pressure synthesis of novel materials

17.5 GPa
22.5 GPa
30 Ã…
High-pressure structural transformation in a GaAs
nanocrystal
Multiple domains
Nucleation at surface
34
Oxide Growth in an Al Nanoparticle
Unique metal/ceramic nanocomposite
Al
AlOx
Oxide thickness saturates at 40 Ã… after 0.5
ns Excellent agreement with experiments
35
4. Ongoing Projects
36
Information Grid
I. Foster C. Kesselman, The Grid Blueprint for
a New Computating Infrastructure (99)
Metacomputing collaboration with DoD
MSRCs 4-billion-atom MD simulation of 0.35 mm
fiber composites
37
MD Moores Law
Number of atoms in MD simulations has
doubled Every 19 months in the past 36 years
for classical MD Every 13 months in the past
15 years for DFT-MD
1,280 x IBM SP3
CDC3600
A petaflop computer will enable 1012-atom MD
107-atom QM
38
Hybrid Simulation of Functionalized AFM
Nanodevices to design new biomolecules
Biological Computation Visualization Center,
LSU (3.9M, 2000- )
39
Conclusion
Large-scale, multiscale simulations of realistic
nanoscale systems will be possible in a
metacomputing environment of the Information Grid
  • Research supported
  • by
  • NSF, AFOSR, ARO, USC/LSU MURI, DOE, NASA, DOD
    Challenge Applications Award
Write a Comment
User Comments (0)
About PowerShow.com