Bob van Eijk

1 / 24
About This Presentation
Title:

Bob van Eijk

Description:

design and construction of data rooting architecture (140 million channels ... Cstrip = 1.5 pF/cm _at_ 0 p/cm2. Cstrip = 1.2 pF/cm _at_ type inversion. UT, Enschede, ... – PowerPoint PPT presentation

Number of Views:14
Avg rating:3.0/5.0
Slides: 25
Provided by: arminre

less

Transcript and Presenter's Notes

Title: Bob van Eijk


1
Research Education Program
  • presented by
  • Bob van Eijk
  • BAC Meeting
  • University of Twente
  • 11 November 1997

2
Contents
  • Research at the
  • The experiment at the LHC
  • Other interests...
  • Education
  • Lectures at the University of Twente
  • Opportunities for UT-students at the NIKHEF

3
The Large Hadron Collider
  • Proton-proton collider (7 Tera (1012) eV per
    proton beam)
  • use the current LEP (ee- collider)
    infrastructure at CERN
  • new generation of experiments (start in 2005)
  • high luminosity in 2007 (Lmax1034 cm-2 s-1 105
    pb-1 / year)
  • Standard Model of electroweak interactions
  • Higgs (the missing particle of the SM)
  • Super Symmetry (SUSY) may give hint on SM free
    parameters
  • Bottom quark physics s( ) 500 mb ? 5?1012
    per year _at_ Lstart1033 ? CP-violation, rare
    decays
  • Top s( ) 1 nb ? 108 per year _at_
    Lmax1034 cm-2 s-1 ? precision
    measurements of couplings, rare decays
  • W, Z, compositeness, ...

4
The CERN accelerator infrastructure
5
ATLASA ToroidaL ApparatuS
  • General purpose detector
  • lepton, ? and hadron energy/momentum measurement
  • ?, electron, m, ? and hadron identification
  • transverse missing energy measurement (?, SUSY
    particles, )
  • Requires
  • excellent charged particle tracking (central
    tracker s(pT)/pT 30 _at_ 500 GeV, hlt2
    m-system s(pT)/pT 11 _at_ 1 TeV)
  • excellent electromagnetic calorimetry (s(E)/E
    10 /?E ? 0.7 )
  • good hadronic energy measurement (s(E)/E 50
    /?E ? 3 , hlt3), s(E)/E 100/?E ? 3 ,
    3lthlt5)
  • redundancy excellent alignment between
    sub-detectors

6
This is a placeholder for the big ATLAS
transparency from the ATLAS poster page
7
responsibilities
  • ? - tracking system
  • design and construction of 96 central outer
    chambers
  • data acquisition and event trigger
  • design and construction of data rooting
    architecture (140 million channels producing
    120 GByte/s)
  • develop algorithms to reduce the first level
    trigger rate (100 kHz ? 10 kHz)
  • event simulation and event reconstruction
  • software engineering Object Orientation (OO)
  • central tracking system
  • forward silicon disk design and construction
  • design and construction of pixel detector modules

8
2T solenoidal B-field
30ltRlt60 cm
60ltRlt120 cm
4ltRlt16 cm
Cylindrical volume 8m3 (?2.2m, L7m)
9
140 million channels
2.3 m2 active silicon
14 kW total heat load
10
L1033 cm-2 s-1
L5x1033 cm-2 s-1 (mH 400 GeV)
11
Other interests...
  • High radiation levels inside ATLAS
  • silicon detectors at small radius do not survive
  • search for alternative sensor diamond
  • Beam telescope
  • RD tool for strip and pixel detector development
  • Fast microtrack imaging
  • Training Mobility of young Researchers (TMR)
  • collaboration with industries
  • Physics simulations
  • QCD calculations top physics
  • SUSY modeling

12
SCT Radiation
Fluence of charged hadrons per cm2/year
Fluence of 1 MeV equivalent neutrons per cm2/year
Radiation dose (10 yrs LHC-equiv.) 0.8 - 1.3 x
1014 n/cm2 40 - 100 kGray (lethal dose 1 Gy)
13
SCT Modules (Barrel)
14
SCTReadout/Electronics
  • binary front end
  • noise lt 1500 e ? noise occupancy lt 5x10-4
  • e 99
  • radiation hard to 2x1014 n/cm2, 10 Mrad
  • pipelined (128 long)
  • optical data transmission and clock/control
  • LED/PIN (820 nm)
  • radiation-hard multi-mode fibre (2 out, 1 in)
  • off-detector ROD and ROB
  • redundant data paths and f/e chip bypassing
  • Dtmin(L1) 2 bunch crossings

15
SCTSignal to Noise
  • n-side strips (simulation)
  • Cstrip 1.5 pF/cm _at_ 0 p/cm2
  • Cstrip 1.2 pF/cm _at_ type inversion

16
SCT-Mechanics(Forward)
  • 0-CTE, CFRP-support structures (space frame,
    disks)
  • space frame carries disks, long services and
    cooling
  • de-coupling of space-frame from disk (kin. mount)
  • disk carries module, local services and cooling
  • de-coupling of modules from disk (kin. mount)

17
Disk layout front view

view
18
Disk Layout back view

19
New Physics New Hardware
( why cool a Si-tracker ? )
Ptot 25 kW
chan. 6.2106
Atotal 60 m2
Lmax 1034 cm-2 s-1
rsi 70 Wm-2
rel 350 Wm-2 (3.4 mW/chan.)
L dt 105 pb-1
Tsi -7 C
Dtbunch 25 ns
Lmax 7 m
?max 1.2 m
Astrip 9 mm2
Bmax 2 T
Pitch 75 mm
20
(No Transcript)
21
SCT(principle of module cooling connection)
FE-chips
quartz fan-ins
heat spreader
silicon detectors
BeO hybrid
PG-connections blocks
disk
large flow ectronics cooling channel ? 4W
small flow detector cooling channel ? 1 W
Z
PG Pyrolythic Graphite ltherm ? 300 -700 W / m
K
R
22
H? gg
23
(No Transcript)
24
CP-Violation
Write a Comment
User Comments (0)