Title: Chinese Remaindering with Errors
1Chinese Remaindering with Errors
2Chinese Remaindering with Errors
- What about?
- General Information
- Prerequisites
- Small Errors
- Large Errors
- Small Errors vs. Large Errors
3Chinese Remaindering with Errors
- What about? Secret Sharing
- Aim Sharing information so
- Any large enough collection of parties can
efficiently recover the secrets - No small coalition of parties can obtain any
information about the secret
4Chinese Remaindering with Errors
- Codewords
- Distance d between to codewords
- Can detect up to d
- errors
- Can fix only d/2 errors
5Chinese Remaindering with Errors
- Dist. d n-k (redundant information)
- e (n-k) /2 max. number of error.
- Proof
- d(u,v) 0 d(u,v) 0 iff u v
- d(u,v) d(v,u) for all u,v
- d(u,v) d(u,w) d(w,v) for all u,v,w
6Chinese Remaindering with Errors
- Proof (contd.)
- d(C) mind(u,v)u,v ? C, u ? v
- d(C) 2e1
- d(c,r) e gt d(c1,r) e1
- Assume d(c1,r) e
- 2e1 d(C) d(c,c1) d(c,r) d(c1,r) e e
7Chinese Remaindering with Errors
- n remainder p1 pn
- p1 lt p2 lt pn
- k with k lt n
- Message m with m lt ?i0, i k pi
- pn p1O(1)
8Chinese Remaindering with Errors
- Error e lt (n-k)/2
- N ?i0, im pi
- K ?i0, ik pi
- Given (p1, , pn, k, r1, , rn)
- Assumption either
- mpi ri or
- ypi 0
9Chinese Remaindering with Errors
- Find r with CRT so that r ? ZN and r rpi
- Two Steps
- find integers y and z so that.
- 1 y E
- 0 z lt N/E
- y r z (mod N)
- Output z/y
10Chinese Remaindering with Errors
- m 17
- p1 2
- p2 3
- p3 5
- p4 7
- p5 13
mp1 1 mp2 2 mp3 2 mp4 3 mp5 4
Bad Example! Why?
11Chinese Remaindering with Errors
- n 5
- k 3
- N 2730
- K 30
- E lt v(N/(K-1))
- E 9
- N/E 303
mp1 1 mp2 2 mp3 2 mp4 3 mp5 4
r1 1 r2 1 r3 2 r4 3 r5 4
Amplitude of Distance 3
12Chinese Remaindering with Errors
? ?
13Chinese Remaindering with Errors
- CRT gt r 1837
- r ? m
- z 51, y 3
- z/y 51/3 17 m
14Chinese Remaindering with Errors
15Chinese Remaindering with Errors
- Set y ?ri ?mp1 pi (Amplitude of Dist.)
- z y m
- Notice
- y ? 0 y E
- m K-1
z y m (K-1)E
16Chinese Remaindering with Errors
- z y m (K-1)E
- E lt N / ((K-1)E) gt (K-1)Elt N/E
- z 0
- y r z (mod N)
- gt z ym yr (mod pi)
17Chinese Remaindering with Errors
- For every mpi ri
- ym ympi yri yr (mod pi)
- Set T ?ri mp1 pi
- (Amplitude of Agreement)
- T N/E
- CRT ym z (mod T)
- But z lt N/E and my (K-1)E lt N/E
18Chinese Remaindering with Errors
- Error e gt (n-k)/2
- N ?i0, im pi
- K ?i0, ik pi
- F 2(l2)/2 v(l2) N1/(l1) K(l1)/2
- l ? v(2nlog pn)/k log p1 ? (optimal)
- Given (p1, , pn, k, r1, , rn)
- Find r with CRT so that r ? ZN and r rpi
19Chinese Remaindering with Errors
- CRT gt r
- Two Steps
- find integers c so that.
- For 0 i l ci lt (F/Ki)
- And ?i0, il ciri 0 mod N
- ltc0, , cngt ? lt0, , 0gt
- Output All roots for polynomial
- C(x) ?i0, il cixi
20Chinese Remaindering with Errors
- n 5
- k 3
- N 2730
- K 30
- F 18372,13
- l 2
mp1 1 mp2 2 mp3 2 mp4 3 mp5 4
er1 0 er2 1 er3 2 er4 3 er5 4
Amplitude of Distance 6
21Chinese Remaindering with Errors
- Note that
- ?cjmj (l1)maxcjmj
- (l1)maxcjKj
- (l1)maxF
22Chinese Remaindering with Errors
- For every mpi ri (Slide 16)
- ?cjmj ?cj mjpi ?cjrjj ?cjrj
- 0(mod pi)
- Set P ?ri mp1 pi
- CRT gt ?j0 j l cjmj 0(mod P)
- Pgt2(l1)F gt ?j0 j l cjmj 0
23Chinese Remaindering with Errors
- Small vs. large error algorithm
- Small error
- geb r(Nachricht), N(?pi), E(Fehlertoleranz)
- ges y, z mit yr z mod N
- Large errors
- geb r(Nachricht), N(?pi), E(Fehlertoleranz)
- ges ci mit ?ciri 0 mod N
24Chinese Remaindering with Errors
- Small vs. large error algorithm
- Small
- yr z mod N
- z-yr 0 mod N
- Large (mit l 1)
- ?ciri 0 mod N
- c0 c1r 0 mod N
25Chinese Remaindering with Errors
- Small vs. large error algorithm
- Small Errors
- yr z mod N gt yr z dN gt yr - dN z
(
)
1 r 0 N
B
(y -k)B (y, yr-dN) (y,z)
26Chinese Remaindering with Errors
- Small vs. large error algorithm
- Large Errors (l 2)
- yrxr² z mod N gt yrxr² z dN
- gt yrxr² -dN z mod N
(
)
1 0 r 0 1 r² 0 0 N
B
(y x -k)B (y,x,yrxr2-dN) (y,x,z)