Chinese Remaindering with Errors - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Chinese Remaindering with Errors

Description:

Any large enough collection of parties can efficiently recover the secrets ... Find r with CRT so that r ? ZN and r = [r]pi. Two Steps. find integers y and z so that. ... – PowerPoint PPT presentation

Number of Views:69
Avg rating:3.0/5.0
Slides: 27
Provided by: Pri6179
Category:

less

Transcript and Presenter's Notes

Title: Chinese Remaindering with Errors


1
Chinese Remaindering with Errors
  • Alex Bulach

2
Chinese Remaindering with Errors
  • What about?
  • General Information
  • Prerequisites
  • Small Errors
  • Large Errors
  • Small Errors vs. Large Errors

3
Chinese Remaindering with Errors
  • What about? Secret Sharing
  • Aim Sharing information so
  • Any large enough collection of parties can
    efficiently recover the secrets
  • No small coalition of parties can obtain any
    information about the secret

4
Chinese Remaindering with Errors
  • General Information
  • Codewords
  • Distance d between to codewords
  • Can detect up to d
  • errors
  • Can fix only d/2 errors

5
Chinese Remaindering with Errors
  • General Information
  • Dist. d n-k (redundant information)
  • e (n-k) /2 max. number of error.
  • Proof
  • d(u,v) 0 d(u,v) 0 iff u v
  • d(u,v) d(v,u) for all u,v
  • d(u,v) d(u,w) d(w,v) for all u,v,w

6
Chinese Remaindering with Errors
  • General Information
  • Proof (contd.)
  • d(C) mind(u,v)u,v ? C, u ? v
  • d(C) 2e1
  • d(c,r) e gt d(c1,r) e1
  • Assume d(c1,r) e
  • 2e1 d(C) d(c,c1) d(c,r) d(c1,r) e e

7
Chinese Remaindering with Errors
  • Prerequisites
  • n remainder p1 pn
  • p1 lt p2 lt pn
  • k with k lt n
  • Message m with m lt ?i0, i k pi
  • pn p1O(1)

8
Chinese Remaindering with Errors
  • Small Errors
  • Error e lt (n-k)/2
  • N ?i0, im pi
  • K ?i0, ik pi
  • Given (p1, , pn, k, r1, , rn)
  • Assumption either
  • mpi ri or
  • ypi 0

9
Chinese Remaindering with Errors
  • Small Errors
  • Find r with CRT so that r ? ZN and r rpi
  • Two Steps
  • find integers y and z so that.
  • 1 y E
  • 0 z lt N/E
  • y r z (mod N)
  • Output z/y

10
Chinese Remaindering with Errors
  • Small Errors
  • m 17
  • p1 2
  • p2 3
  • p3 5
  • p4 7
  • p5 13

mp1 1 mp2 2 mp3 2 mp4 3 mp5 4
Bad Example! Why?
11
Chinese Remaindering with Errors
  • Small Errors
  • n 5
  • k 3
  • N 2730
  • K 30
  • E lt v(N/(K-1))
  • E 9
  • N/E 303

mp1 1 mp2 2 mp3 2 mp4 3 mp5 4
r1 1 r2 1 r3 2 r4 3 r5 4
Amplitude of Distance 3
12
Chinese Remaindering with Errors
  • Small Errors
  • CRT gt r 1837
  • r ? m
  • y Amplitude of Distance

? ?
13
Chinese Remaindering with Errors
  • Small Errors
  • CRT gt r 1837
  • r ? m
  • z 51, y 3
  • z/y 51/3 17 m

14
Chinese Remaindering with Errors
  • Small Errors
  • Why? How?

15
Chinese Remaindering with Errors
  • Small Errors
  • Set y ?ri ?mp1 pi (Amplitude of Dist.)
  • z y m
  • Notice
  • y ? 0 y E
  • m K-1


z y m (K-1)E
16
Chinese Remaindering with Errors
  • Small Errors
  • z y m (K-1)E
  • E lt N / ((K-1)E) gt (K-1)Elt N/E
  • z 0
  • y r z (mod N)
  • gt z ym yr (mod pi)

17
Chinese Remaindering with Errors
  • Small Errors
  • For every mpi ri
  • ym ympi yri yr (mod pi)
  • Set T ?ri mp1 pi
  • (Amplitude of Agreement)
  • T N/E
  • CRT ym z (mod T)
  • But z lt N/E and my (K-1)E lt N/E

18
Chinese Remaindering with Errors
  • Large Errors
  • Error e gt (n-k)/2
  • N ?i0, im pi
  • K ?i0, ik pi
  • F 2(l2)/2 v(l2) N1/(l1) K(l1)/2
  • l ? v(2nlog pn)/k log p1 ? (optimal)
  • Given (p1, , pn, k, r1, , rn)
  • Find r with CRT so that r ? ZN and r rpi

19
Chinese Remaindering with Errors
  • Large Errors
  • CRT gt r
  • Two Steps
  • find integers c so that.
  • For 0 i l ci lt (F/Ki)
  • And ?i0, il ciri 0 mod N
  • ltc0, , cngt ? lt0, , 0gt
  • Output All roots for polynomial
  • C(x) ?i0, il cixi

20
Chinese Remaindering with Errors
  • Large Errors
  • n 5
  • k 3
  • N 2730
  • K 30
  • F 18372,13
  • l 2

mp1 1 mp2 2 mp3 2 mp4 3 mp5 4
er1 0 er2 1 er3 2 er4 3 er5 4
Amplitude of Distance 6
21
Chinese Remaindering with Errors
  • Large Errors
  • Note that
  • ?cjmj (l1)maxcjmj
  • (l1)maxcjKj
  • (l1)maxF

22
Chinese Remaindering with Errors
  • Large Errors
  • For every mpi ri (Slide 16)
  • ?cjmj ?cj mjpi ?cjrjj ?cjrj
  • 0(mod pi)
  • Set P ?ri mp1 pi
  • CRT gt ?j0 j l cjmj 0(mod P)
  • Pgt2(l1)F gt ?j0 j l cjmj 0

23
Chinese Remaindering with Errors
  • Small vs. large error algorithm
  • Small error
  • geb r(Nachricht), N(?pi), E(Fehlertoleranz)
  • ges y, z mit yr z mod N
  • Large errors
  • geb r(Nachricht), N(?pi), E(Fehlertoleranz)
  • ges ci mit ?ciri 0 mod N

24
Chinese Remaindering with Errors
  • Small vs. large error algorithm
  • Small
  • yr z mod N
  • z-yr 0 mod N
  • Large (mit l 1)
  • ?ciri 0 mod N
  • c0 c1r 0 mod N

25
Chinese Remaindering with Errors
  • Small vs. large error algorithm
  • Small Errors
  • yr z mod N gt yr z dN gt yr - dN z

(
)
1 r 0 N
B
(y -k)B (y, yr-dN) (y,z)
26
Chinese Remaindering with Errors
  • Small vs. large error algorithm
  • Large Errors (l 2)
  • yrxr² z mod N gt yrxr² z dN
  • gt yrxr² -dN z mod N

(
)
1 0 r 0 1 r² 0 0 N
B
(y x -k)B (y,x,yrxr2-dN) (y,x,z)
Write a Comment
User Comments (0)
About PowerShow.com