Title: Ch 11 Bipolar Transistors and Digital Circuits
1Ch 11 Bipolar Transistors and Digital
Circuits
- Examine bipolar junction transistor (BJT) use
in inverters for logic circuits. - Basic Inverter (RTL)
- One npn transistor and a load resistor
- BJT Inverters
- Transistor-Transistor Logic (TTL)
- Emitter-Coupled Logic (ECL)
- Analyze to understand inverter performance
- voltage transfer characteristic,
- noise margins,
- fan-in and fan-out limits,
- power dissipation and
- switching speed.
2-input ECL OR / NOR Gate
Y AB
A
B
VR
Y AB
2Bipolar Transistor Operation
- Transistor regions of operation
- Forward Active
- VBE gt 0 E jnc forward
- VBClt 0 C jnc reverse
- Cutoff
- VBE lt 0 E jnc reverse
- VBC lt 0 C jnc reverse
- Saturation
- VBE gt 0 E jnc forward
- VBC gt 0 C jnc forward
C
_
VBC
n
Collector
p
B
VCE
Base
_
_
n
VBE
Emitter
E
IC
Active Ic ßIb
Saturation IClt ß IB
Note VCE VBEVCB VBE - VBC
VCE
Cutoff IC 0
3Bipolar Transistor Operation
Transistor regions of operation
- Forward Active
- Electron injection at emitter and collection
at collector - VBE gt 0 E jnc forward
- VBClt 0 C jnc reverse
- Ic ß Ib
- Cutoff
- No electron injection at Emitter
- VBE lt 0 E jnc reverse
- VBC lt 0 C jnc reverse
- IC 0
- Saturation
- Electron injection from both E C
- VBE gt 0 E jnc forward
- VBC gt 0 C jnc forward
- IC lt ß IB
IC
Saturation IClt ß IB
Active Ic ßIb
VCE
Cutoff IC0
4Bipolar Transistor Operation - DC
- Base bias VBE determines IB
- VCC with RC determine output load line.
- Base IB with output load line determines
Quiescent Point (VCE , IC )
IC
Output Load Line
VCE
IB
IC
VBE
IB
DC Base Current
Quiescent Point
Base Load Line
VCE
VBE
5Bipolar Transistor Operation Small Signal AC
iB
iC
vBE
vCE
VBBvi
- In small signal amplifiers,
- AC signal at input is small gt base current
variation is small. - Device moves around DC quiescent point
- Device stays in the active region
- Amplifier produces current and voltage gain
depending upon the configuration, e.g. common
emitter (above).
6Bipolar Transistor Operation Digital Circuits
IC
Saturation IClt ß IB
Active IcßIb
VCE
- Input signal vi is large.
- VBE and IB changes are large.
- Important applications ? digital circuits
and power amplifiers - Device can be in active, saturation or
cutoff depending on VBE and IB. - Transistor still operates on the load line.
- Moves from cutoff thru active to saturation
or vice versa as the input signal changes.
Cutoff IC 0
7Bipolar Transistor Operation - Characteristics
- Each region of device operation has its own
unique characteristics - Active
- Current gain Ic ß Ib
- VBE VBE,active 0.7 V (typical value)
- VCE,active ?, NO typical value!
- Saturation
- Reduced current gain IClt ß IB
- VBE VBE, sat 0.8 V (typical value)
- VCE VCE, sat 0.2V (typical value)
- Cutoff
- No current gain IC 0, IB 0
- VBE lt O
- VCE,cutoff ?, NO typical value!
IC
Active Ic ßIb
Saturation IClt ß IB
0.2 V
VCE
IB
Cutoff IC? 0
0.7 V 0.8V
VBE
8Resistor Transistor Logic (RTL)
- RTL Logic
- Earliest and simplest logic
- 0 low voltage
- 1 high voltage
- Inverter is the basic building bock
- Combine two inputs in parallel to implement
NOR - Combine two inputs in series to implement
NAND - Transistors operate in cutoff for low 0
input (base) voltage, so IC 0 and output
is high 1. - Transistors operate in saturation for high
1 input (base) voltage, so IC mAs and
the output is low 0 due to IR drop
across RC.
vo
vo
vi
vi
9Basic Bipolar Transistor Inverter (RTL)
- Resistor Transistor Logic (RTL)
- For low vi input, output vo is high
- Transistor is off (cutoff) since iB
0 because base-emitter junction is not
biased sufficiently (VBE is too small). - Since iB 0, then iC 0 because iC ß
iB. - So vo VCC - iC RC VCC
- For high vi input, output vo is low
- Transistor is on since iB gt 0 because
base-emitter junction is biased sufficiently
(VBE is large). - Since VBE is large (0.8 V), iB gtgt 0, then
iC gtgt 0 since iC ß iB. - So vo VCC - iC RC is very small.
- Transistor driven into saturation region so
. vo VCE,sat 0.2V
IB
IC
n
p
n
VBE
0.7 V 0.8V
VBE
IC
Active IcßIb
Saturation IClt ß IB
VCE
Cutoff IC 0
0.2 V
10Basic Bipolar Transistor Inverter (RTL)
- Transistor operates along load line.
- Transistor operates in cutoff when input is
low since iB 0. - As input vi increases, iB increases and
transistor moves into active region. - As input vi increases further, transistor
moves into saturation region and VCE goes
towards zero.
VCE
VBE
IC
IC
Output Load Line
active
Input high vi large
Saturation iC/iB lt ß
Input low vi small
0
cutoff
VCE
VCE
11RTL Voltage Transfer Characteristic
- Region I (A to B)
- Transistor is in cutoff
- VBE is small, iB 0, vo VCC.
- Region II (B to C)
- Transistor is on in the active mode
(iC ß iB). - iB and VBE are larger VBE 0.7V
- iC and iB increase as vi and VBE
increase. - vo and VCE falls as icRC increases.
- Region III (C to D)
- Transistor is in the saturation mode
(iC lt ß iB). - iB and VBE are larger, VBE 0.8 V
- iC is larger
- VCE is small, VCE,sat 0.2V
VCC 5 V
IB
VCE
VBE
VBE
0.7 0.8
vo
A
B
II
I
III
D
C
vi
12Noise Margins
- Noise margins are a measure of the reliability of
the technology. - Measure of the sensitivity to noise.
- Consider one inverter driving an identical
inverter. - How large a noise spike can be tolerated before
an error occurs?
Drive Inverter
Load Inverter
v01
v02
vi1
vi2
- For output of driver high (v01VOH), then input
of load inverter is high (vi2VOH ). - A negative noise spike on input of load inverter
reduces input signal. - Trouble when net input signal is less than VIH so
noise margin is
NMH VOH - VIH . - Similarly, for the low state NML VIL - VOL .
v02
v01
Load Inverter
Drive Inverter
NMH
NML
vi1
VOH
VIH
VIL
VOL
vi2
13RTL Inverter Noise Margins
VCC 5 V
- Noise Margin for Low State
- NML VIL - VOL
- VIL VBE,active 0.7 V
- VOL VCE,sat 0.2 V
- NML VIL - VOL 0.7 V - 0.2 V
0.5 V - Noise Margin for High State
- NMH VOH - VIH
- VOH VCC 5 V
- VIH VBE,sat 0.8 V
- NMH VOH - VIH 5 V - 0.8 V 4.2 V
- Unequal noise margins for high and low
states.
IB
VCE
VBE
VBE
0.7 0.8
vo
A
B
VOH
II
I
III
D
C
NMH
NML
VOL
vi
VOH
VIH
VIL
VOL
14RTL Power Dissipation
VCC 5 V
IB
- Output High State (Low input)
- Transistor is in cutoff so iC ? 0.
- No static power dissipation for high state,
PH 0. - Output Low State (High input)
- Transistor is in saturation so v o
VCE,sat 0.2 V. - iC (VCC - VCE,sat )/RC (5V - 0.2 V)/10K
0.48 mA. - PL VCC iC (5 V)(0.48 mA)
2.4 mW - Average P 1/2(PH PL) 1.2
mW
RC 10K
VCE
VBE
VBE
0.7 0.8
vo
B
A
VOH
II
I
III
D
C
VOL
vi
VIH
VIL
15RTL Propagation Delay
- Output going high
- Transistor turned off (cutoff)
- Charging current flows through RC
- tPLH is time it takes the output to rise
from VOL VCE,sat 0.2 V to 1/2(VOH VOL)
2.6 V
VCC 5 V
vo
iR
iCap
VCC
vo
C
VCE
VBE
VCE,sat
t
tPLH
vo
A
B
VOH
II
I
III
Long charge up time!
D
C
VOL
vi
VIH
VIL
16RTL Propagation Delay
- Output going high
- Transistor turned off (cutoff) (M ? N)
- Charging current flows through RC
- tPLH is time it takes the output to rise
from VOL VCE,sat 0.2 V to 1/2(VOH
VOL) 2.6 V (N ? O)
VCC5V
vo
iR
iCap
VCC
vo
C
VCE
VCE,sat
VBE
t
Transient Response M ? N ? O
tPLH
vo
B
A
VOH
IC
II
I
M
III
D
C
P
VOL
vi
N
VCE
VIH
VIL
O
17RTL Propagation Delay
- Output going low
- Transistor turned on (saturation) and
providing discharge current (P ?R) - But current also flows through RC
- tPHL is time it takes the output to fall
from VOH VCC 5 V to 1/2(VOH VOL) 2.6
V (R ? S)
VCC 5 V
vo
iR
iCap
VCC
vo
C
VCE
VBE
VCE,sat
t
tPHL
vo
Transient Response P ? R ? S
B
A
VOH
IC
II
I
S
R
III
D
C
VOL
P
vi
VCE
VIH
VIL
18RTL Propagation Delay
VCC 5 V
iR
iCap
vo
C
VCE
VBE
IC
S
R
Short discharge time!
P
VCE
19Resistor Transistor Logic (RTL)
- RTL provides simple, basic digital
technology based on bipolar transistors and
resistors. - Logic levels and noise margins
- Noise Margin for Low State
- NML VIL VO
- 0.7 V - 0.2 V 0.5 V
- Noise Margin for High State
- NMH VOH - VIH
- 5 V - 0.8 V 4.2 V
- Unequal noise margins for high and low
states. - Propagation delays
- Output going low
- Output going high
- Propagation delay
- Power Delay Product
vo
vo
vi
vi