PSYC 3030 Review Session - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

PSYC 3030 Review Session

Description:

LS estimates. x'y = (x'x)b. x'x = x'y = (x'x)-1= Residuals. e = = y xb = [I H]y ... girls. y-hat = bo b1X1 b2X2 b12X1X2 ... – PowerPoint PPT presentation

Number of Views:60
Avg rating:3.0/5.0
Slides: 25
Provided by: ccl52
Category:
Tags: psyc | girls | ls | review | session

less

Transcript and Presenter's Notes

Title: PSYC 3030 Review Session


1
PSYC 3030 Review Session
  • Gigi Luk
  • December 7, 2004

2
Overview
  • Matrix
  • Multiple Regression
  • Indicator variables
  • Polynomial Regression
  • Regression Diagnostics
  • Model Building

3
Matrix Basic Operation
  • Addition
  • Subtraction
  • Multiplication
  • Inverse
  • A ? 0
  • A is non-singular
  • All rows (columns) are linearly independent

Possible only when dimensions are the same
Possible only when inside dimensions are the same
2x3 3x2
4
Matrix Inverse
Linearly Dependent
Linearly independent
5
Some notations
  • n sample size
  • p number of parameters
  • c number of values in x (cf. LOF, p. 85)
  • g number of family member in a Bonferroni test
    (cf. p. 92)
  • J I H x(xx)-1x

6
Matrix estimates residuals
  • LS estimates
  • xy (xx)b
  • xx
  • xy
  • (xx)-1
  • Residuals
  • e
  • y xb
  • I Hy

7
Matrix Application in Regression
df
MS
  • SSE ee yy-bxy n-p SSE/n-p
  • SSM 1
  • SSR bxy SSM p-1
    SSR/p-1
  • SST yy n
  • SSTO y(1-J/n)y n-1
  • yy SSM

8
Matrix Variance-Covariance
Var-cov (Y) s2(Y)
var-cov (b) est s2(b) s2(b)
MSE (xx)-1
9
Matrix Variance-Covariance
10
Multiple Regression
  • Model with more than 2 independent variables y
    ß0 ß1X1 ß2X2 ei

11
MR R-square
  • Coefficients of multiple determination
  • R2 SSR/SSTO 0 R2 1
  • alternative
  • Coefficients of partial determination

12
SSTO
SSR(X1)
SSR(X2)
SSR(X1,X2)
SSR(X1X2)
SSR(X2X1)
SSE(X1)
SSE(X2)
SSE(X1,X2)
13
MR Hypothesis testing
  • Test for regression relation (the overall test)
    Ho ß1 ß2 .. ßp-1 0 Ha not all ßs 0
  • If F F(1-a p-1, n-p), conclude Ho.
  • FMSR/MSE
  • Test for ßk
  • Ho ßk 0 Ha ßk ? 0
  • If t t(1-a/2 n-p), conclude Ho.
  • t bk/s(bk) F MSR(xkall others)/MSE

14
MR Hypothesis Testing (cont)
  • Test for LOF
  • Ho EY ßo ß1X1ß2X2. ßp-1Xp-1
  • Ha EY ? ßo ß1X1ß2X2. ßp-1Xp-1
  • If F F(1-a c-p, n-p), conclude Ho.
  • F (SSLF/c-p)/(SSPE/n-c)
  • Test whether some ßk0
  • Ho ßh ßh1 .. ßp-1 0
  • If F F(1-a p-1, n-p), conclude Ho.
  • F MSR(xhxp-1x1xh-1)/MSE

15
MR Extra SS (p. 141, CK)
  • Full y ßo ß1X1 ß2X2 ? SSR(x1,x2)
  • Red y ßo ß1X1 ? SSR(x1)
  • SSR (x2x1) SSR(x1,x2) - SSR(x1)
  • Effect of X2 adjusted for X1
  • SSE(x1) - SSE(x1,x2)
  • General Linear Test
  • Ho ß2 0 Ha ß2 ? 0
  • F

16
Indicator variables
y-hat bo b1X1
y-hat bo b1X1 b2X2
girls
boys
bob2
slope b1
bo
17
y-hat bo b1X1 b2X2 b12X1X2
If b12 0, then there is an interaction ? boys
and girls have different slopes in the relation
of X and Y.
boys
girls
18
Polynomial Regression
  • 2nd Order Y ßo ß1X1 ß2X2ei
  • 3rd Order Y ßo ß1X1 ß2X2 ß3X3ei
  • Interaction
  • Y ßo ß1X1 ß2X2 ß11X2 1 ß22X2 2
  • ß12X1X2 ei

linear
quadratic
interaction
19
PR Partial F-test (p.303, 5th ed.)
  • Test whether a 1st order model would be
    sufficient
  • Ho ß11 ß22 ß12 0 Ha not all ßs in Ho
    0
  • F

In order to obtain this SSR, you need sequential
SS (see top of p. 304 in text). This test is a
modified test for extra SS.)
20
Regression Diagnostics
  • Collinearity
  • Effects (1) poor numerical accuracy
  • (2) poor precision of estimates
  • Danger sign several large s(bk)
  • Determinant of xx 0
  • Eigenvalues of c of linear dependencies
  • Condition (?max/ ?i)1/2
  • 15-30 watch out
  • 30 trouble
  • 100 disaster

21
Regression Diagnostics
  • VIF (Variance Inflation Factor)
  • 1/(1-R2i)
  • When to worry? When VIF 10
  • TOL (Tolerance)
  • 1/VIFi

22
Model Building
  • Goals
  • Make R2 large or MSE small
  • Keep cost of data collection, s(b) small
  • Selection Criteria
  • R2 ? look at ?R2
  • MSE ? can ? or ? as variables are added

23
Model Building (cont)
  • Cp p est. of 1/s2
  • Svar(yhat) yhattrue yhatp
  • SSEp/MSEall (n-2p)
  • p(m1-p)(Fp-1)
  • m available predictors
  • Fp incremental F for predictors omitted

24
Model Building (cont)
  • Variable Selection Procedure
  • Choose min MSE Cp p
  • SAS tools
  • Forward
  • Backward
  • Stepwise
  • Guided selection key vars, promising vars,
    haystack
  • Substantive knowledge of the area
  • Examination of each var expected sign
    magnitude coefficients
Write a Comment
User Comments (0)
About PowerShow.com