Title: COMPUTATIONAL MODELING OF THE SHOULDER
1COMPUTATIONAL MODELING OF THE SHOULDER
- Richard E. Hughes, Ph.D.
- Orthopaedic Surgery
2OUTLINE
- Shoulder anatomy
- Modeling glenoid inclination
- Support vector machine modeling
- New research directions
3ROTATOR CUFF DISORDERS
4EPIDEMIOLOGY
5SHOULDER ANATOMY
6GLENOID ANATOMY
- Long head of biceps
- Labrum
- Not oval
- Shallow
7GLENOID MECHANICS
Rockwood, C.A. and Matsen, F.A. III (1998) The
Shoulder
8OUTLINE
- Shoulder anatomy
- Modeling glenoid inclination
- Support vector machine modeling
- New research directions
9NORMAL INCLINATION
Compression
Net force
Shear
10INCREASED INCLINATION
Net force
Compression
Shear
New inclination
11GLENOID INCLINATION
GLENOID ANGLE (DEG.)
TEAR
NO TEAR
Hughes et al. (2003) CORR 40786-91
12GLENOID INCLINATION
- Rotator cuff tear repair of 96 shoulders
- Control group of 30 shoulders
- SGAP 10 deg. larger for cuff tear group
Tetreault et al. (2004) J. Ortho. Res. 22
202-207
13OBJECTIVE
- To determine if glenoid inclination angle
affects superior humeral head migration
14THEORY
Deltoid
Supraspinatus
Subscapularis
Infraspinatus teres minor
mg
15GLENOHUMERAL STABILITY
Superior migration
No migration
16EFFECT OF INCLINATION
Normal inclination
Increased inclination
17MINIMUM DELTOID FORCE
Min. force with normal inclination
Min. force with inclination
18MODEL ASSUMPTIONS
- Static, planar analysis
- All muscle forces constant except deltoid
(proportional to EMG and area) - Frictionless contact
- Humerus has smaller diameter than glenoid
19DATA SOURCES
- Muscle activation during abduction
- Kronberg, M. et al. (1990) Clin. Orthop. 257
76-85 - Muscle lines of action
- Poppen, N. and Walker, P. (1978) Clin. Orthop.
135 165-170. - Humeral head and glenoid radii
- Iannotti, J. et al. (1992) JBJS 74-A 491-500
- Arm mass
- Chaffin, D.B. and Andersson, G.B.J. (1984)
Occupational Biomechanics
20MODEL PREDICTIONS
5000
4000
0 abduction
3000
Deltoid force (N)
30 abduction
2000
60 abduction
1000
0
91
95
92
93
94
96
97
98
Glenoid inclination angle (deg.)
21METHODS
- 8 cadaver shoulders
- Soft tissues removed, except rotator cuff
- Mounted on text fixture in MTS
- 5, 10, and 15 degree wedges inserted
- Forces applied to rotator cuff tendons via ropes
and pulleys - Humerus moved superiorly at a rate of 0.127 mm/sec
22MECHANIAL EFFECT OF GLENOID INCLINATION ANGLE
Wong et al. (2003) J. Shoulder Elbow Surg. 12
360-364
23AVERAGE ANALYSIS
F
24STOCHASTIC MODEL
F
y
x
25PROBABILITY OF MIGRATION
Probmigration ProbF points out of
glenoid ProbF lies
above n Prob Fy/Fx gt ny/nx
26STOCHASTIC MODEL
- Muscle forces modeled as Gamma distribution
- Mean muscle force during initiation of abduction
was product of EMG, PCSA, and specific tension - Variation in muscle force was 31 of mean
- Monte Carlo simulation
27GAMMA DISTRIBUTION
PROBABILITY
MUSCLE FORCE
28RESULTS
293D EMG-DRIVEN MODEL
- SIMM
- Delft model anatomy
- EMG normalized to MVC reference contractions
303D GLENOHUMERAL JOINT ANALYSIS
31OUTLINE
- Shoulder anatomy
- Modeling glenoid inclination
- Support vector machine modeling
- New research directions
32OBJECTIVES
- To develop a metric of shoulder function that
represents a continuum from pathologic to healthy - To develop a strength-based test for rotator cuff
tears that is superior to MRI or ultrasound
33ISOMETRIC ER STRENGTH
34NORMATIVE SHOULDER STRENGTH
- Healthy volunteers (n120)
- Age 20-78 years
- Dominant and non-dominant sides
- Isometric strength
- Abduction/adduction
- Internal/external rotation
- Flexion/extension
Hughes, R.E. et al. (1999) AJSM 27651-657
35ROTATOR CUFF TEAR (RCT) PATIENT STRENGTH
- Same protocol as normative data
- Full-thickness RCT
- Measurements
- Pre-op
- 6 months post-op
- 12 months post-op
- Intraoperative tear size measurement
- n37
36METHODS
- Use isometric shoulder strength measurements for
asymptomatic shoulders and symptomatic cuff tear
shoulders - Model data using a least-squares support vector
machine (SVM)
372D EXAMPLE
x(x1, x2)
x2
EXTERNAL ROTATION STRENGTH (Nm) _at_ NEUTRAL
x1
ABDUCTION STRENGTH (Nm) _at_ 0o ABDUCTION
38STRENGTH DATA
- Abduction _at_ 30o, 60o, 90o
- Adduction_at_ 30o, 60o, 90o
- External rotation
- 30o IR and 15o abduction
- 0o IR and 90o abduction
- 0o IR and 15o abduction
- 30o ER and 90o abduction
- Internal rotation
- 0o IR and 15o abduction
- 30o ER and 90o abduction
- 30o ER and 15o abduction
- 60o ER and 90o abduction
39STRENGTH DATA
x1, x2, x3
- Abduction _at_ 30o, 60o, 90o
- Adduction _at_ 30o, 60o, 90o
- External rotation
- 30o IR and 15o abduction
- 0o IR and 90o abduction
- 0o IR and 15o abduction
- 30o ER and 90o abduction
- Internal rotation
- 0o IR and 15o abduction
- 30o ER and 90o abduction
- 30o ER and 15o abduction
- 60o ER and 90o abduction
x4, x5, x6
x7
x8
x9
x(x1 , , x14)
x10
x11
x12
x13
x14
40SVM MODEL
(no tear data points)
(tear data points)
41SVM ADVANTAGES
- Can model highly nonlinear relationships in high
dimensional spaces - More intuitive than competing machine learning
methods (i.e. artificial neural networks) - Very computationally efficient
- Can rigorously represent expert knowledge in
model formulation
42SVM APPLICATIONS IN MEDICINE
- Breast tumor identification from ultrasound
images - Microarray gene expression classification
- Nosocomial infection detection
- Bioinformatics
- EEG analysis
43SVM MODELING STEPS
- Identify and prepare data set
- Predict healthy shoulder strength from regression
models (gender, age, body mass) - Train SVM
- Test (evaluate) SVM performance
44ROC CURVE
45ROC RESULTS
46SHOULDER METRIC
(no tear data points)
Distance from hyperplane
(tear data points)
47RESULTS
48DISCUSSION
- Developed a simple unifying metric for healthy
shoulder strength based on healthy-pathologic
continuum - Exceeded some but not all US studies of detecting
cuff tears - Did not exceed diagnostic ability of MRI to
detect cuff tears
49LIMITATIONS
- Asymptomatic people assumed to represent intact
rotator cuff case - Data based on Mayo Clinic data normative data
from rural Minnesota volunteers
50OUTLINE
- Shoulder anatomy
- Modeling glenoid inclination
- Support vector machine modeling
- New research directions
51NEW RESEARCH DIRECTIONS
- Decision sciences
- Optimization modeling of rehabilitation
- Optimization modeling of fracture fixation
- Computer-assisted orthopaedic surgery
- Simulation
- Medical simulators for training surgeons
52OPTIMIZATION MODELING OF REHABILITATION
53OPTIMIZATION MODELING OF REHABILITATION
Maximize
Such that
54OPTIMIZATION MODELING OF FRACTURE FIXATION
- Distal humeral fracture
- Multiple plate holes
- Screws interfere
- Decision what holes to put screws through?
- Integer program
55COMPUTER-ASSISTED ORTHOPAEDIC SURGERY
56COMPUTER-ASSISTED ORTHOPAEDIC SURGERY
57MEDICAL SIMULATION
58ACKNOWLEDGEMENTS
- Aaron Silver
- Matt Lungren
- Oleg Svintsitski
- Shawn ODriscoll, M.D., Ph.D.
- Mike Rock, M.D.
- Kai-Nan An, Ph.D.
- Marj Johnson, P.T.
- Linda Gallo
- Andrew Wong
- Joe Langenderfer
- Amy Mell
- Chris Gatti
- Lisa Case Doro
- James Carpenter, M.D.
59(No Transcript)
60THANK YOU
61CONCAVITY COMPRESSION
Lippitt, S.B. et al. (1993) JSES 227-35