Title: Smart Initialization
1Smart Initialization
2Lecture
- Smart Init what, why, how?
- Configurability
- Structure of Smart Init Modules
- Override Procedures
- Examples of Algorithms
- Enhancements
- Laboratory
3What is it?
- Derives sensible weather elements from model
data. Creates the IFP databases from the D2D
data. - Works on models, not MOS
4Why is it needed?
- Models do not provide sufficient spatial
resolution. - Models do not provide set of needed sensible
weather elements.
5Derived Surface T
6Characteristics of Smart Init
- Field tailorable algorithms
- Can add new weather elements
- Can add local models, if the netCDF files are in
the correct D2D-style format - Dependencies automatic
- Grids are generated as D2D data arrives
7How it works
8Configurability (serverConfig/localConfig)
- INITMODULES
- Maps algorithms modules to models
- INITMODULES MesoEta MESOETAU,
MESOETAS, Eta ETA, LAPS
LAPS - INITMODULES smart init module D2D
Source Databases, -
9Configurability (serverConfig/localConfig)
- INITSKIPS
- Can skip certain model runs (INITSKIPS)
- INITSKIPS RUC 1,2,4,5,7,8,10,11,13,14,16,
17,19,20,22,23 - INITSKIPS D2D ModelName
hour1,hour2,hour3 to skip
10Configurability (serverConfig/localConfig)
- Number of D2D Versions
- Not directly associated with smart init
- Does NOT override D2D purging.
- Default is 2 versions.
- D2DDBVERSIONS ETA 3, NGM 1
- D2DDBVERSIONS D2D model name
numOfVersions,
11Configurability (serverConfig/localConfig)
- Smart init modules
- Can override and provide own
- Coded in Numerical Python
- One file per new model or changed model
12Smart Init structure
- File locations etc/BASE, etc/SITE
- Override files through etc/SITE
- Uses Python inheritance
tells ifpServer what to run
import Forecaster
13Concept of Source/Destination Database (needed
in defining new smart init modules)
- Source database D2D netCDF file
- Destination database IFP
14Format of Smart Init File
- Class Statement
- Levels (function)
- Calc Functions
- def calcT(arguments)
- Helper Functions (if needed)
- Main Declaration
15Smart Init Inheritance
16Format of smart init file
Class Statement and Levels
from Init import class EtaForecaster(Forecaster)
def __init__(self)
Forecaster.__init__(self, "ETA", "Eta") def
levels(self) return "MB1000", "MB950",
MB900", "MB850", "MB800", "MB750",
"MB700","MB650","MB600
17Format of smart init file
Calc Functions
def calcSnowAmt(self, T, FzLevel, QPF, topo)
m1 less(T, 9) m2
greater_equal(T, 30) snowr T -0.5
22.5 snowr where(m1, 20, snowr)
snowr where(m2, 0, snowr) snowamt
where(less_equal(FzLevel - 1000, topo
3.048), snowr QPF, 0) return snowamt
18Format of smart init file
Example of a helper function
def linear(self, xmin, xmax, ymin, ymax, we)
m (ymax ymin) / (xmax xmin 0.0000001)
b ymin m xmin return m we b
19Format of smart init file
Main declaration
def main() EtaForecaster().run() if
__name__ "__main__" main()
20calc Arguments. WARNING These are different
than smart tool arguments
21 calc Arguments (cont.)
22calc Arguments
- NOT the Fcst database as in smart tools
- Can use any combination of source/destination
weather elements in the calcXXX functions. - At present time, cannot easily have multiple
input source databases
23Overriding Algorithms
- Why override?
- I dont like existing algorithms.
- I need additional sensible wx elements.
def calcSnowAmt()
def calcSnowAmt()
24Steps to Override
- Create new smart initialization module.
- If you modify the ones in etc/BASE they will go
away when you upgrade! - Test out new smart initialization modules.
- Put it into routine operations.
25Format of Override File
- Similar to existing smart init modules.
- Subtle differences, mainly due to inheritance.
26Format of override file
from Eta import class MyEtaForecaster(EtaForecas
ter) def __init__(self)
EtaForecaster.__init__(self) def
calcSnowAmt(self, T, QPF) m2
less_equal(T, 32) snowamt where(m2,
10.0QPF, 0) return snowamt def main()
MyEtaForecaster().run() if __name__
main__ main()
27Testing your new module
- Can run from command line
- ifpInit t modeltime algFile
- ifpInit t modeltime a algFile
- Model time in yyyymmdd_hhmm format.
- -a switch forces all grids to be generated
- ifpInit t 20011116_1200 a MyEta
28Testing your new module
- Run from the command line to see progress and
problems. - Check the log files for errors
- /data/logfiles/dateDirectory/EtaInit
- Check the data in the GFE.
29Okay, it works, now what?
- Put it into operational use by
- Redefining INITMODULES in localConfig
- serverConfig.INITMODULESMyEta ETA
- del serverConfig.INITMODULESEta
- Dont forget to disable the original module!
30Adding New Algorithms
- Define new algorithm module
- In localConfig, add new weather elements to
destination database(s) before testing. - Test
- Modify localConfigs INITMODULES.
31Adding Local Models
- netCDF files must have certain information in
order for GFESuite to recognize them - If displayable on d2d, probably close to ok.
- Need geographic information in netCDF.
- Inherit from Forecaster, look at Eta.py for
example. - Similar procedure write module, test, modify
INITMODULES. - May need to modify D2DDIRS.
- Dont forget - you can see these models on
GFESuite without smart init!
32Useful functions in Init.py
def linear(self, xmin, xmax, ymin, ymax, we) --
linear interpolation def FtoK(self, t) --
convert F to Kelvin def KtoF(self, t) -- convert
Kelvin to Farhenheit def esat(self, temp) --
saturation vapor pressure def self._empty -
returns grid of all zeros def self.levels() -
returns list of levels (MB500, MB450,) def
self._minus - return grid of all 1s def
self.pres - return list of levels as numbers
(500, 450,)
33Accessing Data Types
- Scalar
- T, simply a numerical grid
- Vector
- tuple, V0 is magnitude, V1 is direction
- Weather
- tuple, W0 is grid, W1 is key
- Key is set of Weather ugly strings
- Grid value indexed into key gives real value
- Smart Tool lecture/lab covered specifics of types.
34Gotchas
- Conditional statements
- Unlike regular Python, both the true and the
false are always executed in where statements - Standard Python
- if x ! 0 y z / xelse y 0.0
- Numerical Python
- where(not_equal(x, 0.0), z/x, 0.0))
where(not_equal(x, 0.0), z/(x0.00001), 0.00)
35Future Enhancements
- Ability to access multiple sources
- Useful for model blending
- Syntax identical for numerical smart tools and
smart initialization - Fairly close now.
36Examples of Algorithms - sky
def calcSky(self, gh_c, rh_c, topo)
only use the first levels (up to MB600)
gh_c gh_c9,, rh_c rh_c9,,
rh_c where(less(rh_c, 50), 0, rh_c)
m1 logical_and(greater(rh_c, 50), less(rh_c,
70)) m2 logical_and(greater(rh_c, 70),
less(rh_c, 85)) m3 greater(rh_c, 85)
skylayer where(m1, self.linear(50, 70, 0,
25, rh_c), where(m2,
self.linear(70, 100, 25, 100, rh_c),
where(m3, 100, rh_c)))
37Examples of Algorithms - sky
skylayer skylayer / 100 sky
skylayer0 for i in xrange(1,
skylayer.shape0) sky sky
skylayeri - sky skylayeri sky
clip(sky, 0, 1) sky sky 100
return sky
Sowhat is wrong with this algorithm?
38Laboratory Exercises
- Override the Eta algorithm for T
- Simply use 2m FHAG directly
- Enhance to use dry adiabatic rate for topo
corrections - Add a new model (UKMET)
- Add UKMET to localConfig
- Calculate QPF, Wind, and T for UKMET