Soliton Ratchets From Pointlike Inhomogeneities - PowerPoint PPT Presentation

1 / 35
About This Presentation
Title:

Soliton Ratchets From Pointlike Inhomogeneities

Description:

Grupo Interdisciplinar de Sistemas Complejos. Universidad Carlos III de Madrid, Spain ... Biocomputaci n y F sica de Sistemas Complejos (BIFI), Zaragoza, Spain ... – PowerPoint PPT presentation

Number of Views:73
Avg rating:3.0/5.0
Slides: 36
Provided by: anxos
Category:

less

Transcript and Presenter's Notes

Title: Soliton Ratchets From Pointlike Inhomogeneities


1
Soliton Ratchets From Point-like Inhomogeneities
  • Angel Sánchez
  • Grupo Interdisciplinar de Sistemas Complejos
  • Universidad Carlos III de Madrid, Spain
  • Also associated with
  • Instituto de Biocomputación y Física de Sistemas
    Complejos (BIFI), Zaragoza, Spain
  • http//gisc.uc3m.es/anxo

2
Ratchets nonequilibrium rectifiers
  • Molecular motors P. Reimann, Phys. Rep. 361,
    56 (2002), ch. 7
  • Quantum devices Reimann, ch. 8
    C. S. Lee et al.,
    Nature 400, 337 (1999)
    G. Carapella G. Costabile, PRL 87,
    77002 (2001)
  • F.
    Falo et al., Appl. Phys. A 75, 263 (2002)
    J. E. Villegas
    et al., Science 302, 1188 (2003)
  • Granular matter C. Marquet et al., PRL 88,
    168301 (2002) S. J. Moon et al., PRL 91,
    134301 (2003) F.
    Alonso-Marroquín H. J. Herrmann, PRL 92, 54301
    (2004) D. van der Meer et al., PRL 92,
    184301 (2004)
  • Many moreReimann H. Linke, ed., Appl. Phys. A
    75 (2002)

3
Molecular motors
Kinesin/myosin motility on microtubules
4
Particle (rocking) ratchets
  • No thermal equilibrium
  • No spatial inversion symmetry

5
Molecular motors
But molecular motors are not point particles!
6
Solitons as extended particles
(unperturbed)
Ansatz for the kink center position
7
Solitons as extended particles
Collective coordinates approach A. S. A. R.
Bishop, SIAM Rev. 40, 579 (1998)
8
Proposals for Soliton Ratchets
  • F. Marchesoni, PRL 77, 2364 (1996)
  • Z. Csahók et al., PRE 55, 5179 (1997)
  • A. V. Savin et al., PLA 229, 279 (1997)
  • G. Costantini et al., PRE 65, 51103 (2002)
  • M. Salerno N. R. Quintero, PRE 65, 25602
    (2002)N. R. Quintero et al., PRE in press
    (2005)
  • Rocking under correlated noise
  • Coupled particles Asymmetry in V(u)

9
Proposals for Soliton Ratchets
  • S. Flach et al., PRL 88, 184101 (2002)
  • M. Salerno Y. Zolotaryuk, PRE 65, 51103 (2002)
  • L. Morales-Molina et al., PRL 91, 234102 (2003)
  • A. Ustinov et al., PRL 93, 87001 (2004)
  • Asymmetrically driven, rocking ratchet
  • Homogeneous system (no external potential)
  • Role of internal mode

10
Experiments (Josephson)
G. Carapella G. Costabile, PRL 87, 77002
(2001)
11
Experiments (Josephson)
G. Carapella G. Costabile, PRL 87, 77002
(2001)
12
Experiments (Josephson)
F. Falo et al., Appl. Phys. A 75, 263 (2002)
13
Experiments (Josephson)
F. Falo et al., Appl. Phys. A 75, 263 (2002)
14
Experiments (Josephson)
F. Falo et al., Appl. Phys. A 75, 263 (2002)
15
Our proposal
Nonlinear Klein-Gordon System
sine-Gordon Josephson
?4 microtubules
M. V. Sataric et al., PRE 48, 589 (1993)
16
Our proposal
Nonlinear Klein-Gordon System
17
Collective coordinates
Generalized Travelling Wave Ansatz (GTWA) F.G.
Mertens et al., PRB 56, 2510 (1997)
Ansatz
18
Collective coordinates
Generalized Travelling Wave Ansatz (GTWA) F.G.
Mertens et al., PRB 56, 2510 (1997)
Multiply by
, substract and integrate
19
Collective coordinates
Generalized Travelling Wave Ansatz (GTWA) F.G.
Mertens et al., PRB 56, 2510 (1997)
20
Particle picture
Effective ratchet potential
Take the non-relativistic limit
sG
?4
21
Particle picture
Effective ratchet potential
22
Results
Numerical simulations Deterministic
23
Results
Numerical simulations Deterministic
24
Results
Numerical simulations Deterministic
A0.35, A0.45, A0.5
25
Results
Numerical simulations Stochastic
26
Results
Numerical simulations Stochastic
Jumps between deterministic pinned states
27
Collective coordinate approach
Comparison to the deterministic case
Qualitatively correct poor quantitative agreement
28
Collective coordinate approach
Comparison to the stochastic case
Qualitatively correct poor quantitative agreement
29
Improved collective coordinates
Add width as a second degree of freedom
30
Improved collective coordinates
Add width as a second degree of freedom
31
Improved collective coordinates
Comparison to the deterministic case
Excellent quantitative agreement
32
Improved collective coordinates
Comparison to the stochastic case
Excellent quantitative agreement
33
Improved collective coordinates
Comparison to the stochastic case
Excellent quantitative agreement
34
Summary and conclusions
  • Motivation for soliton ratchets
  • Nonlinear Klein-Gordon ratchets
  • Analytically predicted
  • Experimentally feasible Observed in simulations
  • Design extended to other ac forces (in progress)
  • Width (internal oscillation) crucial
  • Size/clustering dependent rectification
  • Length scale competition
  • Stochastic phenomena new mobility windows
  • Applications new devices / molecular motors

35
Thanks!
  • Niurka R. Quintero, Sevilla
  • Luis Morales-Molina, Bayreuth
  • Franz G. Mertens, Bayreuth
  • N. R. Quintero A. S., Proceedings FisEs 97
    (J. A. Cuesta A. S., eds., Madrid, 1997)
  • L. Morales-Molina et al., EPJB 37, 79 (2004)
  • L. Morales-Molina et al., PRE, in press (2005)
Write a Comment
User Comments (0)
About PowerShow.com