Title: Bulk Properties of QCD Matter
1 Bulk Properties of QCD Matter
Many thanks to organizers !
Kai Schweda, University of Heidelberg / GSI
Darmstadt
2Outline
- Introduction
- Hadron Abundances - Tch
- Collective Flow - Tfo, ?
- Heavy Quarks - open charm and quarkonia
3Introduction
4Quark Gluon Plasma
Source Michael Turner, National Geographic (1996)
- Quark Gluon Plasma
- Deconfined and
- thermalized state of quarks and gluons
- ? Study partonic EOS at RHIC and LHC(?) Probe
thermalization using heavy-quarks
5Nuclear phase diagram
- Heavy quarks with ALICE at LHC
- - Study medium properties
- - pQCD in hot and dense environment
- FAIR/GSI program
Energy scan
6Colliding Heavy Nuclei
7High-Energy Nuclear Collisions
Time ?
- 1) Initial condition 2) System evolves 3) Bulk
freeze-out - Baryon transfer - parton/hadron expansion -
hadronic dof - - ET production - inel. interactions cease
- Partonic dof particle ratios, Tch, mB
- - elas. interactions cease
- Particle spectra, Tth, ltbTgt
Plot Steffen A. Bass, Duke University
8Collision Geometry
z
Au Au ?sNN 200 GeV
x
Non-central Collisions
Uncorrected
Number of participants number of incoming
nucleons in the overlap region Number of binary
collisions number of inelastic nucleon-nucleon
collisions Charged particle multiplicity ?
collision centrality Reaction plane x-z plane
9Hadron Abundances
10Particle Multilplicities
PHOBOS fit HIJING BBar Armesto et
al. AMPT Eskola CGC KLN ASW DPMJET-III EHNRR
- at LHC, dN/dh ? 1000 - 3000
- estimate energy density
Theory points HI at LHC last call for
predictions, CERN, May 2007.
PHOBOS compilation W. Busza, SQM07.
11EoS from Lattice QCD
- 1) Large increase in ? !
- Large increase in Ndof
- Hadrons vs. partons
- 2) TC 160 MeV
- 3) Boxes indicate max. initial temperatures
- Longest expansion duration at LHC
- Expect large partonic collectivity at LHC
LHC ?
RHIC
SPS
Z. Fodor et al, JHEP 0203014(02) C.R. Allton et
al, hep-lat/0204010 F. Karsch, Nucl. Phys. A698,
199c(02).
12HI - Collision History
- Tc(ritical) quarks and gluon ? hadrons,
Tc(ritical) 160 MeV - Tch(emical) hadron abundancies freeze out
- Tfo particle spectra freeze out
Plot R. Stock, arXiv0807.1610 nucl-ex.
13Solar Spectrum
Wavelength and Intensity solely determined by
temperature Tsolar 5500 C(at the suns
surface)
Graphik Max-Plack-Institut für Plasmaphysik
14Wie heiss ist die Quelle ?
1000
- Lichtquelle ? Teilchenquelle
- Häufigkeit von Teilchen am besten beschrieben
durch T 2 000 000 000 000 ?C 2
Trillionen ?C - ? 100 000 mal heisser als im Innern der Sonne !
p
N
K
100.
L
K0
K-
h
Teilchenhäufigkeit
N
X
10.0
f
L
W
1.0
X
W
0.1
0.4
0.8
0
1.6
1.2
E mc2 (GeV)
15Chemical Freeze-out Model
Refs. J.Rafelski PLB(1991)333 P. Braun-Munzinger
et al., nucl-th/0304013
Hadron resonance ideal gas
Density of particle i
Qi 1 for u and d, -1 for u and d si 1 for s,
-1 for s gi spin-isospin freedom mi particle
mass
Tch Chemical freeze-out temperature mq
light-quark chemical potential ms strange-quark
chemical potential V volume term, drops out for
ratios! gs strangeness under-saturation factor
mB 3mq mS mq-ms
All resonances and unstable particles are decayed
Compare particle ratios to experimental data
16Hadron Yield - Ratios
- 1) At RHIC
- Tch 160 10 MeV
- ?B 25 5 MeV
- 2) ?S 1.
- ? The hadronic system is thermalized at RHIC.
- 3) Short-lived resonances show deviations.
- ? There is life after chemical freeze-out.
RHIC white papers - 2005, Nucl. Phys. A757,
STAR p102 PHENIX p184 Statistical Model
calculations P. Braun-Munzinger et al.
nucl-th/0304013.
17Chemical Freeze-Out vs Energy
- With increasing energy
- Tch increases and saturatesat Tch 160 MeV
- Coincides with Hagedorn temperature
- Coincides with early lattice results? limiting
temperature for hadrons, Tch ? 160 MeV ! - mB decreases, mB 1MeV at LHC
- ? Nearly net-baryon free !
A. Andronic et al., NPA 772 (2006) 167.
18QCD Phase Diagram
19Baryon Ratios
- With increasing energy
- Baryon ratios approach unity
- At LHC, pbar / p ? 0.95? with increasing
collision energy, production of matter and
anti-matter gets closer
Compilation N. Xu
20Elementary pp Collisions
- Low multiplicities ? use canonical ensemble
Strangeness locally conserved! - particle yields are well reproduced
- Strangeness not equilibrated ! (gs 0.5)
Statistical Model Fit F. Becattini and U. Heinz,
Z. Phys. C 76, 269 (1997).
21HI - Collision History
- Tc(ritical) quarks and gluon ? hadrons,
Tc(ritical) 160 MeV - Tch(emical) hadron abundancies freeze out,
Tch(emical) 160 MeV - Tfo particle spectra freeze out
Plot R. Stock, arXiv0807.1610 nucl-ex.
22Collective Flow
23Pressure, Flow,
- Thermodynamic identity
- entropy p pressure
- U energy V volume
- t kBT, thermal energy per dof
- In AA collisions, interactions among
constituentsand density distribution lead to - pressure gradient ? collective flow
- number of degrees of freedom (dof)
- Equation of State (EOS)
- cumulative partonic hadronic
24Momentum Distributions
- Typical mass ordering in inverse slope from light
? to heavier?? - Two-parameter fit describes yields of p, K, p, L
- Tth 90 ? 10 MeV
- ltbtgt 0.55 ? 0.08 c
- ? Disentangle collective motion from thermal
random walk
p
p
K (dE/dx)
K (kink)
p
K (dE/dx)
K (kink)
p
L
L
2
AuAu _at_130 GeV, STAR
25 (anti-)Protons From RHIC AuAu_at_130GeV
More central collisions
Centrality dependence - spectra at low momentum
de-populated, become flatter at larger momentum ?
stronger collective flow in more central coll.!
STAR Phys. Rev. C70, 041901(R).
26Thermal Model Radial Flow Fit
- Source is assumed to be
- in local thermal equilibration Tfo
- boosted in transverse radial direction r f(bs)
boosted
E.Schnedermann, J.Sollfrank, and U.Heinz, Phys.
Rev. C48, 2462(1993)
random
27D-meson collective flow
Large collective flow velocity ? Spectrum moves
to larger momentum
28HI - Collision History
- Tc(ritical) quarks and gluon ? hadrons,
Tc(ritical) 160 MeV - Tch(emical) hadron abundancies freeze out,
Tch(emical) 160 MeV - Tfo particle spectra freeze out, Tfo ? 100 MeV
?, K, p
Plot R. Stock, arXiv0807.1610 nucl-ex.
29Kinetic Freeze-out at RHIC
- 1) Multi-strange hadrons ? and ? freeze-out
earlier than (p, K, p) - ?? Collectivity prior to hadronization
- 2) Sudden single freeze-out
- Resonance decays lower Tfo
- for (p, K, p)
- ?? Collectivity prior to hadronization
- ? Partonic Collectivity ?
STAR Preliminary
STAR Data Nucl. Phys. A757, (2005 102), A.
Baran, W. Broniowski and W. Florkowski, Acta.
Phys. Polon. B 35 (2004) 779.
30Anisotropy Parameter v2
coordinate-space-anisotropy ?
momentum-space-anisotropy
y
py
x
px
Initial/final conditions, EoS, degrees of freedom
31v2 in the Low-pT Region
P. Huovinen, private communications, 2004
- v2 approx. linear in pT, mass ordering from
light ? to heavier ? - characteristic of hydrodynamic flow !
- sensitive to equation of state
32Non-ideal Hydro-dynamics
- finite shear viscosity ??reduces elliptic flow
- many caveats, e.g. - initial eccentricity ?
(Glauber, CGC, ) - equation of state -
hadronic contribution to ?/s
String theory predicts ?/s gt 1/4?
M.Luzum and R. Romatschke, PRC 78 034915 (2008)
P. Romatschke, arXiv0902.3663.
33Elliptic Flow vs Collision Energy
Glauber initial conditions
- Centrality dependence- initial eccentricity
?- overlap area S - Collision energy dep.- multiplicity density
dNch/dy - in central collisions at RHIC, hydro-limit seems
reached !
NA49, Phys. Rev. C68, 034903 (2003)STAR, Phys.
Rev. C66, 034904 (2002)Hydro-calcs. P. Kolb,
J. Sollfrank, and U. Heinz, Phys. Rev.C62, 054909
(2000).
34v2 of ? and multi-strange ?
- Strange-quark flow - partonic collectivity at
RHIC !
QM05 conference M. Oldenburg nucl-ex/0510026.
35Collectivity, Deconfinement at RHIC
- - v2, spectra of light hadrons
- and multi-strange hadrons
- - scaling with the number of
- constituent quarks
- At RHIC, it seems we have
- ? Partonic Collectivity
- Deconfinement
- ? Thermalization ?
- PHENIX PRL91, 182301(03)
- STAR PRL92, 052302(04)
- S. Voloshin, NPA715, 379(03)
- Models Greco et al, PRC68, 034904(03)
- X. Dong, et al., Phys. Lett. B597, 328(04).
36Collectivity - Energy Dependence
- Collectivity parameters ltbTgt and ltv2gt increase
with collision energy - strong collective expansion at RHIC !ltbTgtRHIC ?
0.6 - expect strong partonic expansion at LHC, ltbTgtLHC
? 0.8, Tfo ? Tch
K.S., ISMD07, arXiv0801.1436 nucl-ex.
37Partonic Collectivity at RHIC
1) Copiously produced hadrons freeze-out p,K,p
Tfo 100 MeV, ?T 0.6 (c) gt ?T(SPS)
2) Multi-strange hadrons freeze-out
Tfo 160-170 MeV ( Tch), ?T 0.4 (c) 3)
Multi-strange v2 f and multi-strange hadrons ?
and ? do flow! 4) Model - dependent ?/s (0?),1
- 10 x 1/4? Deconfinement Partonic (u,d,s)
Collectivity !
38Heavy Quarks
39Heavy ? flavor a unique probe
- mc,b gtgt ?QCD new scale
- mc,b ? const., mu,d,s ? const.
- initial conditions ??????????? test pQCD,
?R, ?F probe gluon distribution - early partonic stage diffusion (?), drag (?),
flow probe thermalization - hadronization chiral symmetry
restoration confinement statistical
coalescence J/? enhancement / suppression
Q2
X. Zhu, M. Bleicher, S.L. Huang, K.S., H.
Stöcker,N. Xu, and P. Zhuang, PLB 647 (2007) 366.
time
40Limitations in PDFs
- Most charm created from gluons, e.g. gg ? c
cbar - increasing uncertainties in gluon distribution at
smaller Bjorken x -
- Assume y0, pT0, x1x2
- 2 x mcharm ? 3 GeVRHIC (?s0.2TeV) x
0.015LHC (?s14TeV) x 2x10-4
41Heavy ? Quark Production
Heavy-quark production at LHC, compared to RHIC
expect factors Charm ? 10 Beauty ? 100
(i) Heavy-quarks abundantly produced at LHC
energies ! (ii) Large theoretical uncertainties ?
energy scan (LHC,FAIR) will help !
Plots R. Vogt,Eur. Phys. J. C, s10052-008-0809-x
(2008).
42Heavy ? quark Correlations
- c-cbar mesons are correlated
- Pair creation back to back
- Gluon splitting forward
- Flavor excitation flat
- Exhibits strong correlations !
- Baseline at zero clear measure ofvanishing
correlations ! - ? probe thermalization among partons !
PYTHIA p p _at_ 14 TeV
X. Zhu, M. Bleicher, S.L. Huang, K.S., H.
Stöcker,N. Xu, and P. Zhuang, PLB 647 (2007)
366. G. Tsildeakis, H. Appelshäuser, K.S., J.
Stachel, arXiv 0908.0427.
43How to measure Heavy-Quark Production
- e.g., D0, c? 123 ?m
- displaced decay vertex is signature of
heavy-quark decay - need precise pointing to collision vertex
44Heavy ? Flavor production at RHIC
- large discrepancy between STAR and PHENIX
factor gt 2 (!) - need Si-vertex upgrades(gt 2011)
- large theoretical uncertainties (factor gt 10)
- Measure charm production at RHIC, LHC, FAIR and
provide input to theory - gluon distribution,
- scales ?R, ?F
Plot J. Dunlop (STAR), QM2009, Open Heavy-flavor
in heavy-ion collisions, Calcs R. Vogt,Eur.
Phys. J. C, s10052-008-0809-x (2008), M.
Cacciari, 417th Heraeus Seminar, Bad Honnef
(2008).
45Where does all the charm go?
J??
?c
Ds
D0
D?
- Total charm cross section open charm
hadrons,e.g. D0, D, Lc, or c,b ? e(?) X - Hidden-charm mesons, e.g. J/y carry 1 of
total charm
Statistics plot H. Yang and Y. Wang, U
Heidelberg.
46D0 ? p K- Reconstruction
p
K-
D0, ct 123 mm
Plot A. Shabetai
47Open ? Charm Performance
- Measure secondary decay vertex ? Direct
reconstruction of D0 ? address heavy-quark
production with 1st year of data taking - Many other channels, e.g. D, D
- Also single-electrons from heavy-flavor decays
ALICE PPR.vol.II, J. Phys. G 32 (2006) 1295.
Simulation 109 pp, 108 pPb, 107 PbPb
collisions
48D? meson Identification
- D ? D0 ?
- Identify Dthrough?MD - D0
- Subtract resonance decay to D0
- Two different methods to address total charm
production
D analysis Yifei Wang, Ph.D. thesis,
University of Heidelberg, in preparation.
49 Viele neue interessante Signale in ALICE bei
LHCz.B. Hadronen mit schweren Quarks (charm
und beauty) D0, D, D, Ds, J/y, y, Lc, Lb,
??????
50Quarkonia
51Charmonium
- Bound state of charm- and anti-charm quark
- Hidden-charm meson
- mJ/? 3.1 GeV, rJ/? 0.45 fm, mJ/?' 3.6 GeV,
JP 1- states - Minimum formation time ? rJ/? / c 0.45 fm
- Charm-quark production at time scale tc 1/2mc ?
0.08 fm - Separation between initial production and
hadronization (factorization)
52Debye Screening
53Quarkonia as a Thermometer
- Check for melting of bottomonium (b-bbar)at
Tdeconfined ? 2 Tc - Check for melting of charmonium (c-cbar)at
Tdeconfined ? 1.2 Tc - Absolute numbers model-dependent Tfo
54J/y Production
P. Braun-Munzinger and J. Stachel, Nature 448
(2007) 302.
? suppression,compared to scaled pp ?
regeneration,enhancement
(SPS)
Low energy (SPS) few ccbar quarks in the system
? suppression of J/y High energy (LHC) many
ccbar pairs in the system ? enhancement of J/y ?
Signal of de-confinement thermalization of
light quarks !
55Statistical Hadronization of Charm
- large charm production at LHC
- strong generation of J/y
- striking centrality dependence
- Signature for QGP formation !
- Initial conditions at LHC ?
- Need to measure total charm production in PbPb !
- Assumes kinetic equilbration of charm !
?scc
A. Andronic, P. Braun-Munzinger, K. Redlich, J.
Stachel, Phys. Lett. B 652 (2007) 259.
56Charmonium production
- In central PbPb collisions at top SPS energy
- J/? to J/? ratio approaches thermal limit
- Indicates kinetic equilibration of charm
57- Examples of the ALICE physics potential- Open
charm D0 ? K- ? (already shown)-
Quarkonia J/?, ? - Global event properties - Will be addressed in first year of pp collisions
58First Physics with ALICE
- Results from simulations
- 1 day of data taking
- Address - multiplicity- mean transverse
momentum- hadro-chemistry
59Charmonia via Di-Electron Measurement
Simulation pp coll.
- electron ID with TPC and TRD
- expect 2500 ? mesons per PbPb yearwith good
mass resolution and S/B
?c1 ?c2
J/?
Simulation 2108 central PbPb collisions
60Heavy Flavor in Muon Channel
J/y
- muon channel J/?, ? ? ??- (2.5 lt?lt 4) 60000
J/? and 2000 ? - initial sample sufficient to study production
rates of J/? and ? states in muon channel
?
61LHC Schedule
Nov 2009 1st pp collisions very short run at
900 GeV Long run of pp collisions at 7- 10
TeV end of 2010 3 - 4 weeks PbPb collisions
at 2.8 - 3.9 TeV
short technical stop over Christmas period
62ALICE ? Ready for Physics !