Title: Small Gaps Between Primes
1Small Gaps Between Primes
- Daniel Goldston
- San Jose State University
2(No Transcript)
3Are there always primes much closer than the
average ?
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13More Modest Goal Prove the existence of
infinitely many consecutive primes whose
distance apart is much smaller than the average
distance i. e.
14HISTORY
15More History
16(No Transcript)
17G-P-Y Conditional Results
Our method uses information on primes in
arithmetic progressions.
EXAMPLE. If you divide the natural numbers up
modulo 3 you get three residue classes
We expect and can prove
18The Prime Number Theorem for Arithmetic
Progressions
where PNT for a. p. \medskip \bf The
Bombieri-Vinogradov Theorem For any \epsilongt0
and Agt1 we have \ \sum_q\le Q
\max_\substacka\\ (a,q)1 \left \pi(xq,a)-
\frac\rm li(x)\phi(q) \right \ll
\fracx(\log x)A \ for Qx1/2/(\log
x)B(A). If this holds for
Qx\vartheta-\epsilon we say the primes have
\textbflevel of distribution \vartheta.
19The Bombieri-Vinogradov Theorem
Level of Distribution of Primes in Progressions
20(No Transcript)
21(No Transcript)
22Prime Tuples
23Weak form of the Prime Tuple Conjecture
24Hardy-Littlewood Prime Tuple Conjecture
- residue classes \pmod p the numbers h\in
\mathcalH fall into, and extend this
definition to \nu_d(\mathcalH) for squarefree
integers d by multiplicativity. If
\mathfrakS(\mathcalH)\neq 0 then
\mathcalH is called - \emphAdmissible
25(No Transcript)
26Approximating Prime Tuples The Old Way
27(No Transcript)
28Results from using Old Approximation
Green and Tao used the asymptotic formula for
in their work on arithmetic progressions of
primes.
Ironically, the new approximation does not work
for Green-Tao.
29Approximating Prime Tuples The New Way
30(No Transcript)
31 New Approximation
32What makes everything work
33(No Transcript)
34(No Transcript)
35Sketch of Proof of Small Gaps
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40Why do primes get news coverage more easily than
other more important mathematics?
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)