BHS 307 Statistics for the Behavioral Sciences - PowerPoint PPT Presentation

1 / 13
About This Presentation
Title:

BHS 307 Statistics for the Behavioral Sciences

Description:

... for the Behavioral Sciences. Chapter Regression. Regression Line ... a somewhat precise prediction based upon the relationships between two variables. ... – PowerPoint PPT presentation

Number of Views:139
Avg rating:3.0/5.0
Slides: 14
Provided by: NAlva6
Category:

less

Transcript and Presenter's Notes

Title: BHS 307 Statistics for the Behavioral Sciences


1
BHS 307 Statistics for the Behavioral Sciences
  • Chapter Regression

2
Regression Line
  • A way of making a somewhat precise prediction
    based upon the relationships between two
    variables.
  • Predictor variable criterion variable
  • The regression line is placed so that it
    minimizes the predictive error.
  • When based upon the squared predictive error the
    line is called a least squares regression line.

3
Demo
  • This demo from the textbooks student website
    shows how different lines result in different
    MSEs (mean square error)
  • http//www.ruf.rice.edu/lane/stat_sim/reg_by_eye/
    index.html

4
Least Squares Equation
  • Y bX a
  • To obtain Y
  • Solve for b and a using the data from the
    correlation analysis
  • Substitute b and a into the regression equation
    and solve for Y.
  • To find points along the line, substitute X
    values into the regression equation and calculate
    Y.

5
Textbook Approach
  • Prediction using Z scores
  • Zy b(Zx) where b r
  • b is called the standardized regression
    coefficient because it is being used for
    prediction.
  • Prediction using raw scores
  • Change the persons raw score to a z-score using
    the z-score formula.
  • Multiple by b, then change the resulting z-score
    back to a raw score.

6
Formula for Regression Line
  • Solving for b
  • Solving for a
  • Then insert both into formula
  • Y bX a
  • Plug in values of X and solve for Y.

7
Standard Error of the Estimate
  • The average amount of predictive error.
  • Average amount actual Y values deviate from
    predicted Y values.
  • No predictive error when r 1
  • Extreme predictive error when r 0
  • Again, formulas vary.

8
Error Bars show the Standard Error of the
Estimate (Regression Line)
9
Squared Correlation Coefficient
  • r2 the square of the correlation coefficient
  • Also called coefficient of determination
  • Measures the proportion of variance of one
    variable predictable from its relationship with
    the other variable.
  • It is the variance of the errors from
    repetitively predicting the mean, minus error
    variance using least squares, expressed as a
    proportion.

10
Interpretation of r2
  • r2 not r is the true measure of strength of
    association and the proportion of a perfect
    relationship.
  • Large values of r2 are unusual in behavioral
    research.
  • Large values of r2 do not indicate causation.
  • Explained variance refers to predictability not
    causality.

11
Regression Toward the Mean
  • The mean is a statistical default use the mean
    to predict when r is 0 or unknown.
  • Smaller values of r move the prediction toward
    the mean.
  • The smaller r is, the greater the predictive
    error, hedged by moving toward the mean.
  • Chance results in a regression to the mean with
    repeated measures.

12
Regression Fallacy
  • The statistical regression of extreme values
    toward the mean occurs due to chance.
  • Israeli pilots praised for landings do worse on
    next landing.
  • It is a mistake (fallacy) to interpret this
    regression as a real effect.
  • Praise did not cause the change in landings.

13
Testing for Regression Fallacy
  • Divide the group showing regression into two
    groups (1) manipulation, (2) control without
    manipulation.
  • Underachievers could show improvement due to
    regression upward to mean.
  • Always include a control group for regression to
    the mean.
Write a Comment
User Comments (0)
About PowerShow.com