Title: Fast and effective prediction of miRNA targets
1Fast and effective prediction of miRNA targets
- Marc Rehmsmeier
- CeBiTec, Bielefeld University, Germany
- Junior Research Group Bioinformatics of Regulation
17.02.2005
2Small interfering RNAs versus small temporal RNAs
Hannon. Nature. 418244-251, 2002.
3miRNA/target duplexes
Grosshans and Slack. The Journal of Cell Biology,
156(1)17-21, 2002.
4A direct approach
Given a miRNA and a potential target What are
the energetically most favourable binding sites?
Calculation of multiple mfe secondary structure
duplexes
5The language of RNA duplexes
hybrid nil unpaired_left_top closed
... h unpaired_left_top ult (base,empty) unpaired_left_top
unpaired_left_bot ... h unpaired_left_bot
ulb unpaired_left_bot
edangle ...
h edangle eds closed edt closed edb closed ... h
6The language of RNA duplexes
closed stacking_region
bulge_top
bulge_bottom internal_loop end
_loop ... h stacking_region sr basepair closed bulge_top (bt basepair tt (uregion, empty)) topbound
closed bulge_bottom (bb (empty, uregion)) botbound closed
internal_loop (il (uregion,uregion)) symbound closed end_loop
el
7Dynamic Programming recurrences
Time/memory complexity linear in target length
8let-7/lin-41 binding sites
9Requirements
For prediction of miRNA targets in large
databases we need
- A fast program ?
- Good statistics
10Length normalisation of minimum free energies
11p-values of individual binding sites
12Poisson statistics of multiple binding sites
13Comparative analysis of orthologous targets
14Multi-species p-values
Poisson p-values
multi-species p-value
General case k species
15A dependence problem
We should see a p-value as often as it says (blue
curve), but we dont (red curve).
16let-7b/NME4 (human/mouse) binding sites
-GGCTCAAGCTGCCCTTACCACCCCATCCCCCACGCAGGACCAACTACCT
CCGTCAGCAAGAACCCAAGCCCACATCCAAACCTGCCTGTCCCAAACCAC
GGGCTTGCACTGCCTTCTGCACTTCAGGTCT-ACCCATGACCTACTACC
TCTGTCAACAAGAAGTCAAGCCCCCATGC---TTCCCATGTCCCCAAAC-
-
TTACTTCCCTGTTCACCTCTGCCCCACCCCAGCCCA
GAGGAGTTTGAGCCACCAACTTCAGTGCCTTTCTGTACCCCAAGCCAGCA
CAAGATTGGACCAA -CACTCCCTACTCCCGCTCTACCCAACTCCAGCCC
AGGGGAGTCTAAGCCTCAACTCTATGTGCCTTTTTGTATCCTAAGTCAAT
ACAATATTGGACCAT
TCCTTTTTGCACCAAAGTGCCGGACA
ACCTTTGTGGTGGGGGGGGGTCTTCACATTATCATAACCTCTCCTCTAAA
GGGGAGGCATTAAAATTCACTGTG GTCCTTGTGTACAAAAGTGCCAGAC
AACCTTTG--------GGGCATTGTCA-AAGGTGACTTCACCTGCCTCAA
AGGAGAGACATTAAAATTT--TATG
CCCAGCACATGGGTGGTACAC
TAATTATGACTTCCCCCAGCTCTGAGGTAGAAATGACGCCTTTATGCAAG
TTGTAAGGAGTTGAACAGTAAAGAGGAAG CTTAAAAT------------
--------------------------------------------------
------------------------------
k 1.1 is the effective k
17Effective number of orthologous targets
18Requirements
For prediction of miRNA targets in large
databases we need
- A fast program ?
- Good statistics ?
19True and false positives and negatives
Positives Negatives
20Sensitivity and specificity
Spec
p-values control specificity
21Target prediction workflow
target db
multi-species p-values
22Prediction of Drosophila miRNA targets
- 78 miRNAs
- 28,645 3UTRs (1/3 from D. mel, 1/3 from D.
pseu, 1/3 from A. gamb)
23Bantam hits
24miR-7 hits
25miR-2 hits
plus a number of others
26RNAhybrid functionality
comparative analysis
effective k
27miRNA target selection
p-values indicate not only biochemical
possibility, but also biological function.
28Acknowledgements
- Peter Steffen, Robert Giegerich, Jan Krüger
- Matthias Höchsmann
- Alexander Stark, Julius Brennecke, Stephen M.
Cohen - Sven Rahmann
- Gregor Obernosterer
- Robert Heinen
- Leonie Ringrose
29References
Rehmsmeier M, Steffen P, Höchsmann M and
Giegerich R. Fast and effective prediction of
microRNA/target duplexes. RNA, 101507-1517, 2004.
bibiserv.techfak.uni-bielefeld.de/rnahybrid