Introduction to Dileptons and inMedium Vector Mesons - PowerPoint PPT Presentation

1 / 47
About This Presentation
Title:

Introduction to Dileptons and inMedium Vector Mesons

Description:

1.1 Electromagnetic Probes in Strong Interactions. g-ray spectroscopy of atomic ... isospin and 'handedness' 3.1.2 Spontaneous Breaking of Chiral Symmetry ... – PowerPoint PPT presentation

Number of Views:99
Avg rating:3.0/5.0
Slides: 48
Provided by: Rapp
Category:

less

Transcript and Presenter's Notes

Title: Introduction to Dileptons and inMedium Vector Mesons


1
Introduction to Dileptons and in-Medium Vector
Mesons
Ralf Rapp Cyclotron Institute Physics
Department Texas AM University College Station,
Texas USA 2 Lectures at ECT EM-Probes
Workshop Trento, 04. 06.06.05
2
1.) Introduction 1.1 Electromagnetic Probes in
Strong Interactions
  • g-ray spectroscopy of atomic nuclei collective
    phenomena,
  • DIS off the nucleon - parton model, PDFs
    (high q2lt 0)
  • - nonpert.
    structure of nucleon JLAB
  • Drell-Yan pp ? eeX (q2gt 0
    symmetry, nucl. shadowing)
  • thermal emission - compact stars (GRBs?!)
  • - heavy-ion
    collisions SPS, RHIC, LHC, FAIR
  • g
    (q20) , ee- (q2gt0)

What is the electromagnetic spectrum of QCD
matter?

3
Creating Strong-Interaction Matter in the
Laboratory
Au Au
NN-coll.
Freeze-Out
Hadron Gas
QGP
4
1.2 Objective Use Dileptons to Probe the Nature
of Strongly
Interacting Matter
  • Bulk Properties
  • Equation of State
  • Microscopic Properties
  • - Degrees of Freedom
  • - Spectral Functions
  • Phase Transitions
  • (Pseudo-) Order Parameters
  • ? (some) Key Questions Can we
  • infer the temperature of the matter?
  • establish in-medium modifications of r , w , f
    ? ee- ?
  • extract signatures of chiral symmetry
    restoration?

5
1.3 Intro-III EoS and Hadronic Modes
  • All information encoded in free energy
  • EoS , ,
  • correlation functions

hadronic current
? iso/scalar pp pairs!
? dileptons, photons!
6
1.4.1 Schematic Dilepton Spectrum in HICs
  • Characteristic regimes in invariant ee- mass,
    M2(pe pe- )2
  • Drell-Yan power law Mn
    ? high mass
  • thermal exp(-M/T) - QGP (highest T) ?
    intermediate mass
  • - HG
    (moderate T) ? low mass

7
1.4.2 Dilepton Data at CERN-SPS
Low Mass CERES/NA45
8
Outline
2. Thermal Electromagnetic Emission Rates -
Vacuum Quarks vs. Hadrons, Vector Mesons 3.
Chiral Symmetry in QCD - Spontaneous Breaking,
Hadronic Spectrum, Restoration 4. (Light) Vector
Mesons in Medium - Hadronic Many-Body
Approach - Dropping Mass, Chiral
Restoration?! 5. QGP Emission 6. Thermal Photons
7. Dilepton Spectra in Heavy-Ion Collisions -
Space-Time Evolution Comparison to SPS and RHIC
Data 8. Summary and Conclusions
9
2.) Electromagnetic Emission Rates
E.M. Correlation Function
Im ?em(M,q)
Im ?em(q0q)
also e.m susceptibility (charge fluct.) ?
?em(q00,q?0)
  • In URHICs
  • source strength dependence on T, mB, mp ,
    medium effects,
  • system evolution V(t), T(t), mB(t),
    transverse expansion,
  • nonthermal sources Drell-Yan, open-charm,
    hadron decays,
  • consistency!

10
2.2 E.M. Correlator in Vacuum s(ee-?hadrons)
e e-
p - p
r I 1
r
2p 4p ...
pp
e e-
h1 h2
r w f
KK
q q
_
qq

_
s sdual(1.5GeV)2 pQCD
continuum s lt sdual Vector-Meson
Dominance
11
2.3 The Role of Light Vector Mesons in HICs
Contribution to invariant mass-spectrum
  • Gee keV Gtot MeV (Nee
    )thermal (Nee )cocktail ratio
  • r (770) 6.7 150 (1.3fm/c)
    1 0.13 7.7
  • w(782) 0.6 8.6 (23fm/c)
    0.09 0.21 0.43
  • f(1020) 1.3 4.4 (44fm/c)
    0.07 0.31 0.23

? In-medium radiation dominated by r
-meson! Connection to chiral symmetry
restoration?!
12
3.) Chiral Symmetry in QCD
3.1 Chiral Symmetry and its Breaking in
Vacuum 3.2 Consequences for the Hadronic
Spectrum 3.3 Vector-Axialvector Correlation
Functions and Chiral Restoration
13
3.1.1 Chiral Symmetry in QCD Vacuum
current quark masses mu md 5-10MeV
Chiral SU(2)V SU(2)A transformation Up to
O(mq ), LQCD invariant under Rewrite LQCD using
qL,R(1g5)/2 q
Invariance under isospin and handedness
14
3.1.2 Spontaneous Breaking of Chiral Symmetry
-
  • strong qq attraction ? Chiral Condensate
  • fills QCD vacuum

cf. Superconductor ee ? 0 , Magnet M ? 0 ,
  • mass generation
    , not observables!
  • but hadronic excitations reflect SBCS
  • massless Goldstone bosons p 0,
  • (explicit breaking fp2 mp2 mq qq )
  • chiral partners split DM 0.5GeV !
  • vector mesons r and w

-

chiral singlet !
15
3.2.2 Hadron Spectra and SBCS in Vacuum
Axial-/Vector Correlators
Constituent Quark Mass
Data lattice Bowman etal 02 Curve
Instanton Model DiakonovPetrov 85,
Shuryak
pQCD cont.
? chiral breaking q2 1 GeV2 ? quark
condensate
nvac (2Nf ) fm-3 !
  • entire spectral shape matters
  • Weinberg Sum Rule(s)

16
3.3.1 Melting the Chiral Condensate
  • Excite vacuum (hotdense matter)
  • quarks percolate / liberated
  • ? Deconfinement
  • qq condensate melts, ciral Symm.
  • chiral partners degenerate Restoration
  • (p -s, r -a1, medium effects ? precursor!)

-
How?
17
3.3.2 Low-Mass Dileptons Chiral Symmetry
Vacuum
  • How is the degeneration realized ?
  • measure vector with ee-, but axialvector?

18
Upshot of Chapters 2 3
E.M. Emission Rates ? proportional to e.m.
correlator (photon selfenergy) ? vacuum
separation in perturbative (qq) -- nonpert.
(r, w, f ) at duality scale sdual
(1.5GeV)2 ? in-med radiation low-mass ? r
-meson, high-mass ? QGP Chiral Symmetry ?
spontaneously broken in the vacuum ? mass
generation! Mq qq ? 0 (low q2) ?
hadronic spectrum chiral partners split (p-s, r
- a1, ) ? excite vacuum ? condensate melts ?
chiral restoration ? chiral partners
degenerate
-
-
19
4.) Vector Mesons in Medium
4.1 Hadronic Many-Body Theory for Vector Mesons
- r -Meson in Vacuum - r -Selfenergies and
Spectral Functions - Constraints and
Consistency Photo-Absorption, QCD Sum
Rules, Lattice QCD 4.2 Vector Meson in URHICs
HotDense Matter 4.3 Dropping r -Mass Vector
Manifestation of CS 4.4 Chiral Restoration?!
20
4.1 Many-Body Approach r -Meson in Vacuum
Introduce r as gauge boson into free p r
Lagrangian ?
p p
r
r -propagator
p e.m. formfactor
pp scattering phase shift
21
4.1.2 r -Selfenergies in Hot Dense Matter
modifications due to interactions with
hadrons from heat bath ? In-Medium r -Propagator
r
Dr (M,qmB,T)M2-mr2-Sr pp-Sr B-Sr M -1
22
(2) Direct r -Hadron Interactions r h ? R
R
r
h
(i) Meson Gas (h p, K, r)
p
G
e.g. r p ? w(770) , a1(1260) ? r p
fix coupling G via decay width
G(a1?rp)
a1
r
Generic features real parts cancel,
imaginary parts add
23
4.1.3 Constraints I Nuclear Photo-Absorption
total nuclear g-absorption
in-medium r spectral cross section
function at photon
point
D,N,D
N-1
24
Light-like r -Spectral Function, Dr(q0q), and
Nuclear Photo-Absorption
On the Nucleon
On Nuclei
  • 2.3. resonance melt (parameter)
  • (selfconsistent N(1520)?Nr)
  • fixes coupling constants and
  • formfactor cutoffs for rNB

Post,Mosel etal 98
Urban,Buballa,RRWambach 98
25
4.1.4 r(770) Spectral Function in Nuclear Matter
In-med p-cloud r -N?B resonances
r -N?B resonances (low-density approx)
In-med p-cloud r -N ? N(1520)
Urban etal 98
Post etal 02
Cabrera etal 02
rN0.5r0
rNr0
rNr0
p N ?r N PWA
Constraints g N , g A
  • Consensus strong broadening slight upward
    mass-shift
  • Constraints from (vacuum) data important
    quantitatively

26
4.1.5 QCD Sum Rules r(770) in Nuclear Matter
General idea dispersion relation for
correlation function
Shifman,Vainshtein Zakharov 79
  • lhs operator product expansion
  • for large spacelike Q2
  • rhs model spectral function
  • at timelike sgt0
  • Resonance
  • pQCD continuum

Nonpert. Wilson coeffs (condensates)
r -Meson
27
QCD Sum Rule Results r(770) in Nuclear Matter
Leupold etal 98
28
4.2 Vector-Meson Spectral Functions in
High-Energy Heavy-Ion Collisions Hot and Dense
Matter
29
4.2.1 r -Meson Spectral Functions at SPS
HotDense Matter
Hot Meson Gas
RRWambach 99
RRGale 99
  • r -meson melts in hot and dense matter
  • baryon density rB more important than
    temperature
  • reasonable agreement between models

30
4.2.2 Light Vector Mesons at RHIC
  • baryon effects important even at rB,tot 0
  • sensitive to rBtot rB rB (r-N and r-N
    interactions identical)
  • w also melts, f more robust ? OZI

-
-
31
4.2.3 Lattice Studies of Medium Effects
Laermann, Karsch 04
calculated on lattice
32
4.2.4 Comparison of Hadronic Models to LGT
33
4.3 Scenarios for Dropping r -Meson Mass
(1) Naïve Quark Model mr 2Mq ? 0 at chiral
restoration
(problem kinetic energy of bound state)
(2) Scale Invariance of LQCD implement into
effective Lhad ? universal scaling law


Brown, Rho 91
34
4.4 Dilepton Rates and Chiral Restoration
dRee /dM2 f B Im Pem
Braaten,PisarskiYuan 90
  • Hard-Thermal-Loop result
  • much enhanced over Born rate
  • matching of HG and QGP
  • automatic!
  • Quark-Hadron Duality
  • at low mass ?!
  • Degenerate axialvector
  • correlator?

35
4.4.2 Current Status of a1(1260)
36
5.) Dilepton Emission from the QGP
5.1 Pertubative vs. Lattice QCD 5.2
Emission from Resonances
37
5.1 Perturbative vs. Lattice QCD
But small M ? resummations finite-T perturbation
theory (HTL)
Baseline
Braaten,PisarskiYuan 91
Im

collinear enhancement Dq,g(t-mD2)-1 1/as
38
5.2 QGP Dileptons from Bound States ?
based on finite-T lattice potentials approach
to zero-binding line ? stable-mass r
-resonance
ShuryakZahed 04
Casalderrey Shuryak 04
  • double-peak structure due to zero-binding line
    mixed phase
  • factor 1.5-2 enhancement at M1.5GeV depends on
    quark width

39
6.) Thermal Photon Emission Rates
Quark-Gluon Plasma
Naïve LO q q (g) ? g (q) ?
But other contributions in O(as) collinear
enhanced Dg(t-mD2)-11/as
Bremsstrahlung Pair-ann.scatt.
ladder resummation (LPM)
Aurenche etal 00, Arnold,MooreYaffe 01
40
7.) Dilepton Spectra in Relativistic Heavy-Ion
Collisions
7.1 Space-Time Evolution of URHICs -
Formation and Freezeouts - Trajectories in
the QCD Phase Diagram 7.2 Comparison to Data
- Dileptons at SPS (vs 17, 8 GeV) -
Photons at SPS (vs 17 GeV) - RHIC (vs
200 GeV)
41
7.1.1 Hadron Production in Heavy-Ion Collisions
? well described by hadron gas in
thermalchemical equilibrium
Braun-Munzinger etal 03
  • SPS / RHIC chemical freezeout close to phase
    boundary
  • ? need to construct evolution
  • before up to earliest formation time t0 ? T0
    gt Tchem
  • after down to thermal freezeout tf ?
    Tfo lt Tchem

42
7.1.2 Trajectories in the Phase Diagram
  • Basic assumption entropy (baryon-number)
    conservation
  • ? fixes T(mB) in the phase diagram
  • Time scale hydrodynamics, e.g. VFB(t)(z0vzt
    ) p (R-0 0.5a-t2)2

Caveat conserve hadron ratios after chem.
f.o. ? chemical potentials for p , K, N,
mp,K,N gt 0 for T lt Tchem
mN GeV t fm/c
43
7.2.1 Low-Mass Dileptons at SPS
Top SPS Energy
  • QGP contribution small
  • medium effects!
  • drop. mass or broadening?!

44
7.2.2 Intermediate-Mass Dileptons at SPS NA50
e.m. corr. continuum-like Im ?em M2 (1 as/p
)
QGP HG!
45
7.2.3 Photon Spectra at the SPS WA98
Hydrodynamics QGP HG
Huovinen,RuuskanenRäsänen 02
  • T0260MeV, QGP-dominated
  • still true if pp?gX included

46
7.3 Dilepton Spectrum at RHIC
47
8.) Conclusions
  • Thermal E.M. Radiation from QCD matter
  • - Low-mass dileptons in-med r (w, f) ? Chiral
    Restoration!?
  • - Intermediate mass qq annihilation ?
    QGP Radiation!?
  • - similar for photons but M0

-
  • extrapolations into phase transition region
  • ? in-med HG and QGP shine equally bright
    (duality)
  • deeper reason? lattice
    calculations? axialvector mode?
  • phenomenology for URHICs so far promising
  • - importance of model constraints
  • - precision datatheory needed for definite
    conclusions
  • much excitement ahead PHENIX, NA60, CERES,
    HADES,
  • ALICE,
    and theory!
Write a Comment
User Comments (0)
About PowerShow.com