Title: LSO from Discovery to Commercial Development
1LSO - from Discovery to Commercial Development
- C. L. Melcher
- CTI, Inc.
- Knoxville, TN, USA
2Acknowledgments
- Schlumberger-Doll Research, Ridgefield
- J. S. Schweitzer, R. A. Manente, C. A. Peterson
- California Institute of Technology, Pasadena
- T. A. Tombrello, H. Suzuki
- LETI, Grenoble
- J. J. Aubert, Ch. Wyon
- CTI, Inc., Knoxville
- R. Nutt, M. Andreaco
- St. Petersburg State Technical University, St.
Petersburg - P. A. Rodnyi and co-workers
- Institute of Single Crystals, Kharkov
- B. Minkov, M. V. Korzhik, and co-workers
- Ural State Technical University, Ekaterinburg
- B. V. Shulgin and co-workers
3Properties of the ideal scintillator
- High light output
- Fast decay time
- High density
- High atomic number
- Good energy resolution
- Suitable emission wavelength
- Good mechanical strength
- Non-hygroscopic
- Practical crystal growth
- Low cost
4Strengths/weaknesses of various scintillators
5Search strategy for new scintillators
- Identify suitable luminescent center
- Suitable emission wavelength
- High transition probability
- Compatible with host material
- Identify candidates for host material
- High density
- High atomic number
- Transparent
- Non-hygroscopic
- Practical crystal growth
- Synthesize candidates
- Solid state synthesis by sintering powders
- Characterize scintillation properties
- Single crystal growth
6Powder synthesis of candidate materials
7Ce3 activators
- 4f 5d transition
- Allowed dipole transition
- Typically high quantum efficiency
- Typically 20-60 ns decay time
- Emission wavelength usually 350 450 nm depending
on crystal field of host e.g. GSOCe, BaF2Ce,
CeF3
8Ln2SiO5 host materials
Growth of lanthanide oxyorthosilicate single
crystals and their structural and optical
characteristics, G. V. Ananeva, A. M. Korovkin,
T. I. Merkulyaeva, A. M. Morozova, M. V. Petrov,
I. R. Savinova, V. R. Startsev, and P. P.
Feofilov, Akademii Nauk SSSR, Izvestiya, Seriya
Neorganicheskie Materialy, V 17, N 6, p. 754-8,
June 1981.
- Czochralski crystal growth of Ln2SiO5, Ln Y,
Gd-Lu - Crystal structure
- Physical characteristics
- Melting point
- Density
- Refractive Index
- Doping with Nd3, Ho3, Er3, Tm3, Yb3
9Early papers
- Melcher, U.S. Patent No. 4,958,080 (1990)
- Melcher and Schweitzer, IEEE Conf. Rec. (1991)
- Rodnyi (1992)
- Minkov, Functional Materials (1994)
- Shulgin et al. (1990)
- Melcher and Schweitzer, IEEE Trans. Nucl. Sci.
(1992) - Melcher and Schweitzer, Nucl. Instr. Meth. (1992)
10Crystal structure vs. RE radius
11Crystal structure Lu2SiO5 (LSO)
Monoclinic C Space group C2/c Lattice
constants a 14.254 Å b 6.641 Å c 10.241
Å b 122.2º
12Crystal growth practical requirements
- Congruent melting (solid and liquid have same
composition in equilibrium) - Reasonable melting point (compatible with
crucible and furnace materials) - Mechanically strong material
- Reasonable distribution coefficient for dopant
13Dopant concentration vs fraction of melt pulled
14Czochralski growth of single crystals
Pull 1 mm/hr
Rotation 5 rpm
Seed crystal
Iridium crucible
Crystal
melt
Induction heater
Insulation
15Czochralski growth of single crystal LSO
2070oC
16Transmission of pure and Ce-doped LSO
17Low temperature (11K) excitation spectra
18Low temperature (11K) emission spectra
19Ce1 Ce2 gamma ray emission
20Pulse height spectrum of 137Cs
21Coincidence resolving time (511 keV)
22Intrinsic background radiation
- 2.6 of naturally occurring Lu is Lu-176
- Beta decay with primary gamma rays of 88, 202,
307 keV - Count-rate from Lu-176
- 0 1000 keV 40 counts/sec/g
23Scintillation efficiency h bSQ
Lempicki et al., Nucl. Instr. Meth. A333,
304-311 (1994)
24Scintillator properties
25Photon interaction cross sections
26Emission spectra at room temperature
27Scintillation decay times
28Coincidence resolving time
29Commercialization issues
- Raw materials
- Availability of large quantities
- Low cost
- Recycling of scrap
- Factory
- Low cost growth stations
- Reliable electrical power
- Cooling water system
- Growth control system
- Detector processing
30Abundance of Lu
Element Abundance
(ppmw) Lu 0.8 I 0.45 Tl 0.85 Cd
0.15 W 1.25 Bi 0.009 Ge 1.5 Hg
0.085
31Raw materials
Lu2O3
32LSO factory
33Electrical power
Battery backup
Dual electrical service (3 MW)
34Cooling water system
1000 gpm
35Cooling towers
36Nitrogen supply
37Crystal boules
38LSO production boules
Picture of 50 boules
39Light output of all LSO crystals - 2002
40Energy resolution of all LSO crystals - 2002
41LSO decay time
42Light output uniformity within a boule
43Energy resolution uniformity within a boule
44Decay time uniformity within a boule
45Detector processing
46Detector processing robotic assembly of pixels
47Detector processing Ultraviolet light cures
adhesive
48Detector with PMTs
49LBNL PET detector modules
- PD Array Identifies Crystal of Interaction
- PMT Provides Timing Pulse and Energy
Discrimination - PDPMT Measures Energy Deposit
- PD / (PDPMT) Measures Depth of Interaction
1 square PMT
PD array
64 element LSO array
Custom IC
Courtesy of W. W. Moses, LBNL - CFI
50UCLA
Courtesy of UCLA Crump Institute
51Finished crystals
52Commercial products - Accel
- Clinical applications
- 9216 LSO crystals
- High throughput
- 20 minute whole body scan
53Commercial products - HRRT
- High Resolution Research Tomograph
- 119,808 LSO crystals
- Depth of interaction
- 2.5 mm resolution
54PET images