Title: Nexttoleading order lightfront threebody dynamics
1LC2008 Mulhouse July 6-11
Next-to-leading order light-front three-body
dynamics
J. A. O. Marinho, Tobias Frederico ITA, São
José dos Campos PhD Thesis
Collaborators JPBC de Melo, E Pace, S Pisano, G.
Salme, P.U. Sauer
OUTLINE
- Introduction Motivation - three-body valence WF
- Review LF Quasi-Potential Approach 4d B.-S.
equation - LF three-boson dynamics ladder 4d B.-S.
equation - Bosonic Yukawa model LO and NLO
- Zero-range model LO and NLO
- RemarksConclusions
1/18
2- I. Introduction Motivation
- Dynamics of few-constituents valence state on the
Light-Front (LF) - ?? 4d Bethe-Salpeter eq.
- Iterated Resolvents- Brodsky, Pauli, Pinsky
Phys. Rept. 301(98)299 -
Frederico et al NPA737(04)260c - LF two-boson/ two-fermion systems - (Quasi
Potential Approach) -
Sales et al PRC61(00)044003
63(01)064003 -
- LF conserved current operators - Kvinikhidze
Blankleider PRD68(03)02581 - WTI -QP two-boson/two-fermion - Marinho et al
PRD76(07)096001PRD77(08)116010 - Electroweak observables, form-factors GPD
(Nonvalence contributions) - Tiburzi Miller PRD67(03)054014 054015
two-body/GPD - De Melo et al PRD73(06) 074013 pion ff q gt 0
(SL TL) - Ji, Mischenko, Radyuskin PRD73(06)114013
pion/GPD -
2/18
3II. Review LF Quasi-Potential Approach 4d
B.-S. equation
Woloshyn Jackson NPB64(1973)269
two-boson systems
3/18
Sales et al. PRC61(2000)044003
4valence propagator in global LF time
Valence? Valence scattering amplitude
Effective interaction
4/18
5Reconstruction 4-d B.S. amplitude from the
valence wf
(i e ?0)
(projecting back to the LF retrieves the valence
wf.)
Reversing LF time projection operation!
ltBS Ampl. 4d operator BS Amplgt ? ltval.3d
operator val.gt
5/18
6ExampleBosonic Yukawa model
Mass2 eigenvalue eq. valence wf
6/18
7IV. Three-boson systems and ladder 4d BS equation
Integration over k- for 1 and 2 ? free 3-boson
resolvent
7/18
8Faddeev decomposition
8/18
9In practice Wi is obtained from a power
expansion in V
LO
NLO
9/18
10Bosonic Yukawa model LO
10/18
11Bosonic Yukawa model NLO
11/18
12V. Zero-range model LO and NLO
4d ladder
Laddercontact?
12/18
13Leading order bound-state 3-boson equation
Bound state eq.
Vi Faddeev components
13/18
14The divergence is eliminated by fixing lambda
through the 2-boson bound state mass!
Frederico 92 regularization Mjk real ? no
collapse Carbonell Karmanov 03
no-regularizaton collapse for M2Blt critical value
14/18
15Next-to-Leading order bound-state 3-boson equation
LO kernel
NLO kernel
15/18
16Three-body reducible diagrams
i
i
i
i
j
j
j
...
j
k
k
k
k
Three-body irreducible diagrams
i
i
i
i
j
j
j
j
k
k
k
k
16/18
17NLO 3-boson bound-state equation
LO kernel
????
NLO kernel
Effective 3-body forces
17/18
18- VI. Remarks Conclusions
- LF Few-body dynamics dynamics of the valence
w.-f. - Quasi-potential Approach to LF ? LF dynamics
- 4-d Bethe-Salpeter amplitude ?? valence w.-f.
- 4-d operators ?? 3-d operators acting valence
w.f. - Conserved current operator WTI
- Quasi-potential Approach systematic expansion of
the LF dynamics of three-body bound-states - NLO effective 3-body interactions with pair
creation - Zero-range model LO retrieves previous valence
bound-state eq. ( also
covariant LF approach) - NLO three-body interaction ? 4-particle
intermediate state - Chalenges dependence on the regularization in
NLO? Conserved current operator? Spin?
18/18