Title: Part III Physics: Medical Physics Option Magnetic Resonance Imaging
1Part III Physics Medical Physics
OptionMagnetic Resonance Imaging
- Dr T A Carpenter
- http//www.wbic.cam.ac.uk/tac12
2Lecture Content
- Lecture I
- Overview of Nuclear Magnetic Resonance
- Excitation and Signal detection
- One pulse and Two pulse experiments
- Hardware
3Lecture Content
- Lecture II
- How does NMR become MRI
- Effects of Magnetic Field Gradients
- Imaging pulse sequences
- contrast
- examples
4Useful Web Sites
Rochester Institute http//www.cis.rit.edu/htbook
s/mri/mri-main.htm
5(No Transcript)
6PD- T2 weighted with full coverage
TR 6055, TEeff 20 120, ETL 10, 512x240,
35.84 x 16.8. 27 5mm slices. Scan time 5mins gt360
acquired this year Work horse scan for
screening Could contrast, better deep grey
matter than FSE at 1.5T
7PD- T2 weighted - Pituitary Tumour
TR 6055, TEeff 20 120, ETL 10, 512x240,
35.84 x 16.8. 27 5mm slices. Scan time 5mins
8PD- T2 weighted - Glioma
TR 6055, TEeff 20 120, ETL 10, 512x240,
35.84 x 16.8. 27 5mm slices. Scan time 5mins
9(No Transcript)
10(No Transcript)
11NMR History
- 1921 Compton electron spin
- 1924 Pauli Proposes nuclear spin
- 1946 Stanford/Harvard group detect first NMR
signal - mid -50 to mid 70s NMR become powerful tool for
structural analysis - mid-70 first superconducting magnets
12NMR History
- 1976 Lauterbur First NMR image of sample tubes
in a chemical spectrometer - 1981 First commercial scanners lt0.2T
- 1985 1.5T scanner
- 1986 Rapid developments in SNR, resolution
etc - 1998 Whole body 8T at OSU
13Nuclear Zeeman Effect
Application of strong magnetic field B0 lifts
degeneracy of nuclear spin levels
DE
For spin 1/2 DE g h B0 g Gyromagnetic
ratio (constant of nucleus) For hydrogen g 42.5
Mhz/T
14Population Difference
Given by Boltzman Statistics na exp(
-ghBo/kT ) nb population difference is small lt1
in 106 NMR is very insensitive
15Semi-Classical Model
Gyroscopic motion of magnetic moment about B0
B0
m
Use classical mechanics(Larmor) w0 - g B0
16Ensemble Average
M
17Rotating Frame
Consider precessing moment in a frame of
reference rotating at the larmor frequency around
B0
w gBo
y
Y
X
x
18Rotating Frame
Classical treatment of M
Effect of RF in laboratory Frame
Y
Equivalent to sinusoidal Brf
X
19Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
20Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
21Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
22Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
23Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
24Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
25Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
26Signal Detection
rotating Frame
B0
X
X
Y
Y
27Fourier Transformation
FT
Sampling frequency 2 expected frequency spread
(Nyquist)
28Effect of RF pulses
B0
z
z
90o degree pulse
x
x
B1 (rf)
y
y
29Effect of RF pulses
B0
z
z
90o degree pulse
x
x
B1 (rf)
y
y
30Effect of RF pulses
B0
z
z
180o pulse (inverting pulse)
x
x
B1 (rf)
y
y
31Effect of RF pulses
B0
z
z
180o pulse (inverting pulse)
x
x
B1 (rf)
y
y
32Effect of 180o RF pulses
B0
z
z
180o degree pulse
x
x
B1 (rf)
y
y
33Effect of 180o RF pulses
B0
z
z
180o degree pulse
x
x
B1 (rf)
y
y
34Effect of 180o RF pulses
B0
z
z
180o degree pulse
x
x
B1 (rf)
y
y
35Effect of 180o RF pulses
B0
z
z
180o degree pulse
x
x
B1 (rf)
y
y
36Effect of 180o RF pulses
x
x
B1 (rf)
y
y
37Effect of 180o RF pulses
x
x
B1 (rf)
y
y
38Effect of 180o RF pulses
x
x
B1 (rf)
y
y
39Effect of 180o RF pulses
x
x
B1 (rf)
y
y
40Effect of 180o RF pulses
x
x
y
y
x
x
y
y
41Effect of 180o RF pulses
x
x
y
y
x
x
y
y
42Two Pulse sequences (I) 90? 90 Saturation
recovery
Two Pulse sequences (I) 180? 90 Inversion
recovery
43T1 Spin Lattice Relaxation Time
- Describes the return to equilibrium for spins
from the excited state - Spins loose heat to the rest of the world
- Requires fluctuating magnetic field near the
Larmor frequency for an effective transfer of
energy from a spin to surrounding lattice
44Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
45Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
46Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
47Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
48Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
49Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
50Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
51Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
52Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
53Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
54T2 and T2
55Spin-Spin Relaxation Time
- Static inhomogeneities refocussed by 180 pulse
- Time varying imhomogeneity are not
- T2 changes in disease give rise to diagnostic
value of MRI
56Bloch Equations
57Superconducting Magnet
Helium vessel containing super-con coil
Vacuum
58Superconducting Magnet
59Shimming
60Other Magnet Types
Permanent magnet, e.g. light weight rare earth
magnets, lt0.3T
61Other Magnet Types
62Other Magnet Types
Electromagnet lt0.3T
63Special Superconducting Magnets
- Active Shielding
- Extra coils reduce stray field
- Improves siting
12
4
10
0.5T wholebody
3T AS wholebody
2
5mT contour
64RF Coils
Remember Brf must be ? B0
Field is ? subject, can use solenoid.
65RF Coils
Remember Brf must be ? B0
Saddle coil, Brf is ? coil access. Efficiency
is low, and homogeneity is poor
Field is ? subject, cannot use solenoid.
66(No Transcript)
67Lecture Content
- Lecture II
- How does NMR become MRI
- Effects of Magnetic Field Gradients
- Imaging pulse sequences
- contrast
- examples
68How to Make Images
Impose (separately)
dBzdx
dBzdy
dBzdz
X gradient Gx
Y gradient Gy
Z gradient Gz
Typical values are 10-100 mT/m
69How to make images
For a Z gradient
wz -g(B0 Gz.z)
-hz
hz
70How to make images
71Imaging Gradients
- Special coils (together with power supplies)
provide linear variation in B0 in X, Y and Z
directions
Z
B0
Z
72Imaging Gradients
- Special coils (together with power supplies)
provide linear variation in B0 in X, Y and Z
directions
X,Y
73Selection of Slice
Use Fourier relationship
74Selection of slice
Slice thickness adjusted by changing gradient
strength or slice bandwidth (longer pulse has
narrower frequency spread) Slice position
adjusted by changing the centre frequency of the
pulse
75k-space
- k-space is the raw data space before fourier
transformation into the image - 2D image will be represented by a 2D array of
data points spread throughout k-space - Differing the k-space trajectory will alter image
contrast
76Image vs k-space
?(r)
S(k)
k(t) ?/2??G(t)dt
77Image vs k-space
?(r)
S(k)
78Image vs k-space
?(r)
S(k)
79Image vs k-space
?(r)
S(k)
80Image vs k-space
FT
?(r)
S(k)
81Information in k-space
82GE k-space trajectory
RF
G
S
G
R
G
P
S(t)
?(r)
S(k)
83GE k-space trajectory
RF
G
S
G
R
G
P
S(t)
-kr
kr
?(r)
S(k)
84GE k-space trajectory
RF
G
S
G
R
G
P
S(t)
-kr
kr
?(r)
S(k)
85GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
86GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
87GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
88GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
89GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
90GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
91GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
92GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
93GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
94GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
95GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
96GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
97GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
98GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
99GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
100GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
101SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
102SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
103SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
104SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
105SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
106SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
107Definitions
TR
RF
G
S
G
R
G
P
S(t)
108Definitions
TE
RF
G
S
G
R
G
P
S(t)
109Controlling contrast
110Proton Density
TR
111T2 Contrast
TR
112PD- T2 weighted with full coverage
TR 6055, TEeff 20 120, ETL 10, 512x240,
35.84 x 16.8. 27 5mm slices. Scan time 5mins gt360
acquired this year Work horse scan for
screening Could contrast, better deep grey
matter than FSE at 1.5T
113T1 Contrast
114Alzheimers
115T2 Contrast
116T2 and T2 of acute head injury
117Effect of Flip angle a
B0
X
Y
Brf
118Effect of Flip angle a
90o pulse Maximum signal but have to wait 5T1 for
recovery
B0
X
Y
Brf
119Effect of Flip angle a
B0
X
Y
Brf
120Effect of Flip angle a
Flip angle 30o detect M0sin a 0.5 M0 remaining
M0cos a 0.87 M0
B0
X
Y
Brf
121Contrast versus ?
Contrast versus TR
TR/TE/?
122Why does MRI take so long
- Answer
- Only one phase encode line acquired per
excitation - Spin Echo 2563s for T2, 2560.6s for T1
- Gradient Echo 25635ms (but have to do 3D
- Solution
- get more phase encode lines per excitation
123RARE/FSE/TurboSE
Pulse sequence
Multiple spin echos
RF
G
slice
G
1
G
2
Rx
124RARE k-space trajectory
kp
-kp
-kr
kr
125RARE k-space trajectory
kp
-kp
-kr
kr
126RARE k-space trajectory
kp
-kp
-kr
kr
127RARE k-space trajectory
kp
-kp
-kr
kr
128RARE k-space trajectory
kp
-kp
-kr
kr
129RARE k-space trajectory
kp
-kp
-kr
kr
130RARE k-space trajectory
kp
-kp
-kr
kr
131Echo Planar Imaging
- Fastest imaging method
- Typical AQ time is 30-100ms
- Low RF deposition
- Very fast gradient switching
- Highly demanding on MRI hardware
- B0 homogeneity
- gradient switching
132Why ?
- freeze involuntary patient motion
- visualization of dynamic process
- fast imaging minutes
- turbo imaging seconds
- More complex MRI experiments
- obtain multiple images vary some parameter e.g.
TI - reduce patient examination time
133GE-PEI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
134GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
135GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
136GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
137GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
138GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
139GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
140GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
141GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
142GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
S(k)
143GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
S(k)
144GE vs EP Imaging
Assume FOV 25cm AQ 10ms Matrix 256
time/sample 10-2/256 Bandwidth 25kHz
Gread 25 x 103/0.25 100 000Hz/m
2.5 mT/m
145GE vs EP Imaging
Assume FOV 25cm AQ 0.5ms Matrix 128
time/sample 5x10-4/128 Bandwidth 250kHz
Gread 250 x 103/0.25 1 000
000Hz/m 25 mT/m
146MRI at 3T
128x128 single shot, GE echo planar. X,Y,Z shim
only (30s) No template or navigator
correction Straight FFT after row reversal
147fMRI (functional MRI)
Monitor T2 or T2 contrast during cognitive
task eg acquire 20-30 slices every 4
seconds Design experiment to have alternating
blocks of task and control condition Look for
statistically significant signal intenisty
changes correlated with task blocks
148(No Transcript)
149Resting
O2 glucose
oxyhaemoglobin
deoxyhaemoglobin
150Activated
ATP
ADP
O2 glucose
O2
Blood flow
over-compensation
BOLD signal
151Effect of Intravascular Oxygenation level
T2 (and T2) reduced because of diffusion
through field gradients
deoxy
oxy
Blood vessel
Paramagnetic
Diamagnetic
152T2 curves activated and rest
resting
activated
oxyhaemoglobin
deoxyhaemoglobin
153Unilateral Finger Opposition (high res)
154Definitions
- Diffusion relates to the microscopic Brownian
thermal motion of molecules - Perfusion, classically is defined as that
process that results in the delivery of nutrients
to cells, normally expressed as ml/min/100g wet
weight of tissue
155Effect of Diffusion on NMR
- Rms. of an ensemble is zero
- For a single molecule diffusion results in a
gaussian distribution of displacements
r
156Diffusion and Spin echoes
d
d
D
157Diffusion and Spin echoes
I/I0 e -bD b g2g2d2(D-d/3)
158D and ADC
I/I0 e -bD b g2g2d2(D-d/3)
Log (I/I0)
H2O 2.1 x 10 -3 mm2s-1 DMSO 0.55 x 10 -3
mm2s-1 normal 0.71 x 10 -3 mm2s-1 ischaemic
0.55 x 10 -3 mm2s-1
b
159Diffusion Weighted Imaging
RF
Gs
Gr
Gp
160Diffusion Weighted Imaging
161d
d
D
Typical Values ? 20, ? 50
Log (I/I0)
b
162Practical Problems in Human DWI
- Gross Motion
- Head motion
- breathing
- Pulsitility
- CSF/brain pulsation
- Anisotropy
- D is direction dependant, especially white matter
163Practical Problems in Human DWI
- Gross Motion
- Echo Planar Imaging
- navigator echoes
- Pulsitility
- gating plus navigator echoes
- Anisotropy
- Measure trace, Dxx Dyy Dzz
- Measure full tensor (all matrix elements)
164Diffusion Weighted EPI (b1570 s/mm2)
READ
PHASE
SLICE
FOV 25cm, TE 118ms TY DW-EPI 128x128
interpolated to 256x256 Partial k-acquisition
(62.5) 4 interleaves, d 28ms D 66 ms
165Diffusion Weighted EPI (b1570 s/mm2)
166Diffusion Weighted EPI (b1570 s/mm2)
167MRI and O15 water PET
168(No Transcript)
169Effect of Intravascular Gd
Tissue
Blood vessel
Tissue
170Effect of Intravascular Gd
T2 (and T2) reduced because of difussion
through field gradients
Tissue
Blood vessel
Tissue
171(No Transcript)
172Data Analysis
- Fit first pass of the bolus (avoid recirculation)
- Gamma variate, or (better) Monte Carlo
- Estimate arterial input function from large
vessel signal - rrCBV, rrCBF but absolute MTT
173T2 weighted FSE images (3555/80/4)
rrCBV-map
map of the bolus delay (MTT image)
Perfusion weighted MRI of a patient with a high
grade stenosis (gt90) of the right internal
carotid artery leading to a terminal supply zone
infarction in the region of the middle cerebral
artery, from http//www.picker.com/mr/acr/perfusn
/perfusn.htm
174Caution
- Numbers obtained are not for true perfusion (as
measured by PET) - Similar to dynamic CT, DSC measures
micro-capillary flow - However good correlation between PET and DSC (in
pigs), in humans??
175True Perfusion by MRI
- Arterial spin labeling
- EPISTAR, ASL, QUIPS
- label arterial blood on the way into brain
- subtract images with and without labelling
- difference is due to arterial water that has
entered tissue, i.e. perfusion
176Scanner Overview
Gradient Controller
Master Controller
X
Y
Z
RF Controller
RF Amplifier
DAC
Receiver
Gradient Coil
RF coil
preamp
Magnet