RF Transceiver Design Condensed course for 3TU students - PowerPoint PPT Presentation

1 / 34
About This Presentation
Title:

RF Transceiver Design Condensed course for 3TU students

Description:

RF Transceiver Design Condensed course for 3TU students – PowerPoint PPT presentation

Number of Views:133
Avg rating:3.0/5.0
Slides: 35
Provided by: stude1676
Category:

less

Transcript and Presenter's Notes

Title: RF Transceiver Design Condensed course for 3TU students


1
RF Transceiver DesignCondensed course for 3TU
students
  • Peter Baltus
  • Eindhoven University of Technology
  • Department of Electrical Engineering
  • 20070607 / 20070608

2
Agenda Day 1 Thursday June 7th 2007
  • 1000-1115 lecture 1
  • Systems, specs
  • Technologies FOMS
  • Architectures finding subblock parameters
  • 1115-1200 instruction 1
  • 1200-1300 lunch
  • 1300-1415 lecture 2
  • Amplifiers Mixers
  • 1415-1530 instruction 2
  • 1530-1630 lecture 3
  • Oscillators Filters
  • 1630-1700 instruction 3

3
Agenda Day 2 Friday June 8th 2007
  • 900-1015 lecture 4
  • Block interaction
  • substrate xtalk
  • coupling of inductors
  • Packaging
  • thermal effects
  • multi-mode
  • non-linear input/output impedance
  • 1015-1100 instruction 4
  • 1100-1200 lecture 5
  • Multiple-antenna OFDM systems overview, system
    build-up, digital signal processing
  • 1200-1300 lunch
  • 1300-1400 lecture 6
  • Influence and digital compensation of Phase Noise
    and Carrier frequency offset
  • 1400-1430 instruction
  • 1430-1530 lecture 7
  • Influence and digital compensation of IQ
    imbalance and nonlinearities, generalized error
    model
  • 1530-1600 instruction

4
Lecture 1 RF Systems Specifications
5
Instruction
6
Question 1
  • Design a simple mass-market WLAN system
  • - f 5..6GHz - BW 20MHz
  • - SNRmin 11dB
  • - Range 100m LOS
  • Find a consistent (but not unique) set of
    parameters
  • - Transmit power
  • - Receive noise figure
  • - Receiver IP3
  • - Receiver selectivity
  • Make any reasonable assumption required

7
Question
  • Calculate required transmit power if
  • Frequency 2.5GHz
  • range 10m
  • sensitivity -70dBm
  • omnidirectional antennas
  • LOS

8
Solution
  • PRX-70dBm
  • GRX GTX0dB
  • Wavelength0.12m
  • PTX 0.11mW
  • Low power!
  • Cheap AA NiCd battery 1.5Wh gt 14000 hr!

9
Question
-10 dBm
Pout
-40 dBm
frequency
2
What is IIP2 and OIP2 assuming a power gain of 7
dB
10
Two signals at the input of a non-linear system
Yield a lot! of other frequency components
?1
?2
11
A forest of frequencies
12
Graphical overview of inter-modulation products
13
Calculation of IP2
IIP2 input power where wanted power second
order power (extrapolated point).
14
Formula for OIP2 (small signal extrapolation!)
Pfund,out
Pout
?P
frequency
2
(dBm)
15
Answer
The input IIP2 is OIP2 divided by the power gain
(so -7 dB)
16
Calculation of IP3
IIP3 input power where wanted power the third
order power(extrapolated point).
17
Formula for OIP3 (when not in compression)
Pfund,out
Pout
?P
freq.
2
(dBm)
18
RX NF
  • Exercise
  • Calculate RX minimum NF for
  • Psensitivity -70dBm
  • BW 20MHz
  • SNRmin15dB

19
RX NF
  • Solution
  • PRX-70dBm
  • BW20MHz
  • SNRmin 15dB
  • Equivalent input noise -85dBm
  • Equivalent input noise density-158dBm/Hz
  • Thermal noise density (kT) -174dBm/Hz
  • Total transceiver NF16dB
  • Note need to include losses for antenna filter,
    switches, antenna loss (total e.g. 3dB) and
    baseband implementation loss to get RX IC NF

20
RX ADC
  • Exercise
  • Bandwidth 1MHz
  • max signal -20dBm
  • min signal -70dBm
  • SNRmin 11dB
  • Calculate ADC minimum sampling rate minimum
    bits assuming perfect analog channel selectivity
    but no AGC, and ADC noise contribution less than
    1dB

21
RX ADC
  • Solution
  • Bandwidth 1MHz, sample rate gt2Msps
  • Resolution
  • max signal -20dBm
  • min signal -70dBm
  • equivalent input noise -81dBm
  • equivalent ADC input noise -91dBm
  • Dyn range 71dB
  • Effective resolution gt 12bit

22
Lecture 2 Amplifiers Mixers
23
Instruction
24
Question 1
  • For a simple mass-market WLAN system
  • - select a (very simple) LNA topology
  • - identify main performance parameters
  • - choose typical/common sense values
  • - set approximate values for components
  • - draw an approximate layout of the IC
  • - identify potentially relevant parasitic
    elements

25
Question 2
  • For a simple mass-market WLAN system
  • - select a (very simple) Mixer topology
  • - identify main performance parameters
  • - choose typical/common sense values
  • - set approximate values for components
  • - draw an approximate layout of the IC
  • - identify potentially relevant parasitic
    elements

26
Lecture 3 VCOs and Filters
27
Instruction
28
Question 1
  • For a simple mass-market WLAN system
  • - select a (very simple) VCO topology
  • - identify main performance parameters
  • - choose typical/common sense values
  • - set approximate values for components
  • - draw an approximate layout of the IC
  • - identify potentially relevant parasitic
    elements

29
Question 2
  • For a simple mass-market WLAN system
  • - select a (very simple) IF filter topology
  • - identify main performance parameters
  • - choose typical/common sense values
  • - set approximate values for components
  • - draw an approximate layout of the IC
  • - identify potentially relevant parasitic
    elements

30
The End
  • for today!
  • Thanks for your attention !
  • Tomorrow
  • Block interaction
  • or
  • Why it still doesnt work ?

31
Lecture 4 Why it still doesnt work ?
32
Instruction
33
Question
  • Design
  • Floorplan
  • Pin-out
  • For a 4x4 MIMO WLAN transceiver for the
    mass-market

34
The End
  • for my contribution today
  • Thanks for your attention !
Write a Comment
User Comments (0)
About PowerShow.com