Exploiting Onchip Memory Bandwidth in the VIRAM Compiler - PowerPoint PPT Presentation

1 / 50
About This Presentation
Title:

Exploiting Onchip Memory Bandwidth in the VIRAM Compiler

Description:

... number of lanes up to 4. Need more memory banks than default DRAM macro for 8 lanes. Slide 23. Outline ... Using compiled code: 1, 2, 4, and 8 lanes. Slide 26 ... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 51
Provided by: davidoppe
Category:

less

Transcript and Presenter's Notes

Title: Exploiting Onchip Memory Bandwidth in the VIRAM Compiler


1
Exploiting On-chip Memory Bandwidth in the VIRAM
Compiler
  • Dave Judd, Katherine Yelick, Christoforos
    Kozyrakis, David Martin, and David Patterson
  • http//iram.cs.berkeley.edu/

2
IRAM Overview
  • A processor architecture for embedded/portable
    systems running media applications
  • MIPS scalar core with vector co-processor
  • Embedded DRAM

Flag 0
Flag 1
Instr Cache (8KB)
FPU
Flag Register File (512B)
MIPS64 5Kc Core
CP IF
Arith 0
Arith 1
256b
256b
SysAD IF
Vector Register File (8KB)
64b
64b
Memory Unit
TLB
256b
JTAG IF
DMA
Memory Crossbar

JTAG
DRAM0 (2MB)
DRAM1 (2MB)
DRAM7 (2MB)
3
Why Vectors?
  • Utilizes on-chip bandwidth of IRAM
  • parallelism within instructions
  • Efficient architecture for vectorizable code
  • avoids area, power, and design of reorder logic
  • low instruction decode overhead
  • Multimedia algorithms are vectorizable
  • e.g., vectorize across pixels in an image
  • Scales easily across chip generations
  • e.g., 32-way parallelism in instruction can be
    implemented by 1, 2, 4, 8-way
  • Leverages well-known compiler technology

4
Architecture Details
  • MIPS64 5Kc core (200 MHz)
  • Single-issue scalar core with 8 Kbyte ID caches
  • Vector unit (200 MHz)
  • 8 KByte register file (32 64b elements per
    register)
  • 256b datapaths, can be subdivided into 16b, 32b,
    64b
  • 2 arithmetic (1 FP, single), 2 flag processing
  • Memory unit
  • 4 address generators for strided/indexed accesses
  • Main memory system
  • 8 2-MByte DRAM macros
  • 25ns random access time, 7.5ns page access time
  • Crossbar interconnect
  • 12.8 GBytes/s peak bandwidth per direction
    (load/store)
  • Off-chip interface
  • 2 channel DMA engine and 64n SysAD bus

5
Floorplan
  • Technology IBM SA-27E
  • 0.18mm CMOS, 6 metal layers
  • 290 mm2 die area
  • 225 mm2 for memory/logic
  • Transistor count 150M
  • Power supply
  • 1.2V for logic, 1.8V for DRAM
  • Typical power consumption 2.0 W
  • 0.5 W (scalar) 1.0 W (vector) 0.2 W (DRAM)
    0.3 W (misc)
  • Peak vector performance
  • 1.6/3.2/6.4 Gops wo. multiply-add (64b/32b/16b
    operations)
  • 3.2/6.4 /12.8 Gops w. madd
  • 1.6 Gflops (single-precision)
  • Tape-out planned for Spring 01

6
Scalable Design
  • 2 lanes, 4 MB
  • 1.6 Gops

4 lanes, 8 MB 3.2 Gops (32-bit)
1 lane, 2 MB .8 Gops
  • Scaling number of lanes for performance, energy,
    area
  • Number of DRAM banks may scale independently
  • e.g., 16 banks rather than 8

7
Vector Architectural State
  • Number of VPs given by the Vector Length register
    vl
  • Width of each VP given by the register vpw
  • vpw is one of 8b,16b,32b,64b
  • Maximum vector length is given by a read-only
    register mvl
  • mvl depends on implementation and vpw
    128,128,64,32 in VIRAM-1

8
VIRAM Compiler
Optimizer
Frontends
Code Generators
C
T3D/T3E
Crays PDGCS
C
C90/T90/SV1
Fortran95
SV2/VIRAM
  • Based on the Crays production compiler
  • Challenges
  • narrow data types and scalar/vector memory
    consistency
  • Advantages relative to media-extensions
  • powerful addressing modes and ISA independent of
    datapath width

9
Compiler Challenges
  • Can compiled code effectively use VIRAM design?
  • Is on-chip DRAM bandwidth sufficient
  • How well do multimedia applications vectorize
  • Generating code for variable width data

10
Matrix-Vector Multiplication
  • Vector matrix multiply ( mvm with column layout)
  • saxpy 2 vloads, 1 vstore (all unit stride)
  • Matrix vector multiply
  • dot 2 vloads, (both unit stride a reduction)
  • saxpy 2 vloads, 1 vstore (2 strided 1 unit)
  • Sparse matrix-vector multiply
  • dot 3 vloads (1 indexed, 2 unit reduction)
  • saxpy 3 vloads, 1 vstore (2 indexed, 2 unit)
  • needs column layout

11
Matrix Vector Multiplication
  • Performance of various source optimizations

Column performance peak
12
Comparison of MVM Performance
  • Double precision floating point
  • compiled for VIRAM (note chip only does single)
  • hand- or Atlas-optimized for other machines

100x100 matrix
  • As matrix size increases, performance
  • drops on cache-based designs
  • increases on vector designs

MFLOPS
13
Sparse MVM Performance
  • Performance is matrix-dependent lp matrix
  • compiled for VIRAM using independent pragma
  • sparse column layout
  • Sparsity-optimized for other machines
  • sparse row (or blocked row) layout

MFLOPS
14
Generating Code for Variable VPW
  • Strategy vectorizer determines minimum correct
    vpw for each loop nest
  • Vectorizer assumes vpw64 initially
  • At end of vectorization, discard vectorized copy
    of loop if greatest width encountered is less
    than 64 and start vectorization over with new
    vpw.
  • Code gen checks vpw for each loop nest.
  • Limitation a single loop nest will run at the
    speed of the widest type.
  • Reason simplicity performance of the common
    case
  • No attempt to split/combine loops based on vpw

15
Media Benchmarks
  • Mostly from U Torontos benchmark suite
  • 8-bit data, 16-bit operations
  • Colorspace strided loads/stores
  • Composition unit stride
  • Convolve strided
  • Mixed 16 and 32-bit integer
  • Detect
  • Decrypt
  • 32-bit Floating point
  • FIR filter
  • SAXPY 64 64 element
  • SAXPY 1K 1024 element
  • matmul matrix multiplication

16
Integer Benchmarks
  • Strided access important, e.g., RGB
  • narrow types limited by address generation
  • Outer loop vectorization and unrolling used
  • helps avoid short vectors
  • spilling can be a problem
  • Tiling could probably help

17
Floating Point DSP Benchmarks
  • Performance is competitive with hand-coding
  • Vector length is important (e.g., saxpy)
  • but multiple vectors is fine (e.g., matmul)

18
Conclusions
  • VIRAM ISA shows high performance on compiled code
  • competitive with modern processors
  • limitations are address generation for strided
    and indexed memory operations
  • Compiler effectively uses variable width data
  • allows media applications to vectorize
  • performance scales with inverse data width
  • Future compiler work
  • Tiling
  • Fixed point support
  • Better register allocation

19
Backup slides
20
Performance Summary
  • Performance of compiled code is generally good
  • matmul and saxpy meet or beat hand-coded
  • 3 addressing modes very useful
  • Limitations to performance
  • Dependencies or inadequate compiler analysis
  • Inadequate memory bandwidth
  • Lack of address generators
  • Short vectors
  • Future compiler work
  • Tiling
  • Fixed point support
  • Better register allocation

21
Scaling Media Benchmarks
22
Compiled matrix-vector multiplication 2
Flops/element
  • Easy compilation problem stresses memory
    bandwidth
  • Compare to 304 Mflops (64-bit) for Power3
    (hand-coded)
  • Performance scales with number of lanes up to 4
  • Need more memory banks than default DRAM macro
    for 8 lanes

23
Outline
  • Why vectors for IRAM?
  • Including media types
  • The virtual lane model
  • Virtual processor width
  • Limitations to performance
  • Dependencies or inadequate compiler analysis
  • Inadequate memory bandwidth
  • Lack of address generators
  • Short vectors
  • Comparisons to other architectures
  • Conclusions

24
Matrix-Vector Multiply
  • Scaling Matrix-Vector Multiplication

25
Performance on Media Benchmarks
  • Using compiled code 1, 2, 4, and 8 lanes

26
Compiled matrix-vector multiplication 2
Flops/element
  • Easy compilation problem stresses memory
    bandwidth
  • Compare to 304 Mflops (64-bit) for Power3
    (hand-coded)
  • Performance scales with number of lanes up to 4
  • Need more memory banks than default DRAM macro
    for 8 lanes

MFLOPS
27
Compiling Media Kernels on IRAM
  • The compiler generates code for narrow data
    widths, e.g., 16-bit integer
  • Compilation model is simple, more scalable
    (across generations) than MMX, VIS, etc.
  • Strided and indexed loads/stores simpler than
    pack/unpack
  • Maximum vector length is longer than datapath
    width (256 bits) all lane scalings done with
    single executable

28
Vector Vs. SIMD Example
  • Simple image processing example
  • conversion from RGB to YUV
  • Y ( 9798R 19235G 3736B) / 32768
  • U (-4784R - 9437G 4221B) / 32768
    128
  • V (20218R 16941G 3277B) / 32768
    128

29
VIRAM Code (22 instructions)
  • RGBtoYUV
  • vlds.u.b r_v, r_addr, stride3, addr_inc
    load R
  • vlds.u.b g_v, g_addr, stride3, addr_inc
    load G
  • vlds.u.b b_v, b_addr, stride3, addr_inc
    load B
  • xlmul.u.sv o1_v, t0_s, r_v
    calculate Y
  • xlmadd.u.sv o1_v, t1_s, g_v
  • xlmadd.u.sv o1_v, t2_s, b_v
  • vsra.vs o1_v, o1_v, s_s
  • xlmul.u.sv o2_v, t3_s, r_v
    calculate U
  • xlmadd.u.sv o2_v, t4_s, g_v
  • xlmadd.u.sv o2_v, t5_s, b_v
  • vsra.vs o2_v, o2_v, s_s
  • vadd.sv o2_v, a_s, o2_v
  • xlmul.u.sv o3_v, t6_s, r_v
    calculate V
  • xlmadd.u.sv o3_v, t7_s, g_v
  • xlmadd.u.sv o3_v, t8_s, b_v
  • vsra.vs o3_v, o3_v, s_s
  • vadd.sv o3_v, a_s, o3_v
  • vsts.b o1_v, y_addr, stride3, addr_inc
    store Y

30
MMX Code (part 1)
  • RGBtoYUV
  • movq mm1, eax
  • pxor mm6, mm6
  • movq mm0, mm1
  • psrlq mm1, 16
  • punpcklbw mm0, ZEROS
  • movq mm7, mm1
  • punpcklbw mm1, ZEROS
  • movq mm2, mm0
  • pmaddwd mm0, YR0GR
  • movq mm3, mm1
  • pmaddwd mm1, YBG0B
  • movq mm4, mm2
  • pmaddwd mm2, UR0GR
  • movq mm5, mm3
  • pmaddwd mm3, UBG0B
  • punpckhbw mm7, mm6
  • pmaddwd mm4, VR0GR
  • paddd mm0, mm1
  • paddd mm4, mm5
  • movq mm5, mm1
  • psllq mm1, 32
  • paddd mm1, mm7
  • punpckhbw mm6, ZEROS
  • movq mm3, mm1
  • pmaddwd mm1, YR0GR
  • movq mm7, mm5
  • pmaddwd mm5, YBG0B
  • psrad mm0, 15
  • movq TEMP0, mm6
  • movq mm6, mm3
  • pmaddwd mm6, UR0GR
  • psrad mm2, 15
  • paddd mm1, mm5
  • movq mm5, mm7
  • pmaddwd mm7, UBG0B
  • psrad mm1, 15
  • pmaddwd mm3, VR0GR

31
MMX Code (part 2)
  • paddd mm6, mm7
  • movq mm7, mm1
  • psrad mm6, 15
  • paddd mm3, mm5
  • psllq mm7, 16
  • movq mm5, mm7
  • psrad mm3, 15
  • movq TEMPY, mm0
  • packssdw mm2, mm6
  • movq mm0, TEMP0
  • punpcklbw mm7, ZEROS
  • movq mm6, mm0
  • movq TEMPU, mm2
  • psrlq mm0, 32
  • paddw mm7, mm0
  • movq mm2, mm6
  • pmaddwd mm2, YR0GR
  • movq mm0, mm7
  • pmaddwd mm7, YBG0B
  • movq mm4, mm6
  • pmaddwd mm6, UR0GR
  • movq mm3, mm0
  • pmaddwd mm0, UBG0B
  • paddd mm2, mm7
  • pmaddwd mm4,
  • pxor mm7, mm7
  • pmaddwd mm3, VBG0B
  • punpckhbw mm1,
  • paddd mm0, mm6
  • movq mm6, mm1
  • pmaddwd mm6, YBG0B
  • punpckhbw mm5,
  • movq mm7, mm5
  • paddd mm3, mm4
  • pmaddwd mm5, YR0GR
  • movq mm4, mm1
  • pmaddwd mm4, UBG0B
  • psrad mm0, 15

32
MMX Code (pt. 3 121 instructions)
  • pmaddwd mm7, UR0GR
  • psrad mm3, 15
  • pmaddwd mm1, VBG0B
  • psrad mm6, 15
  • paddd mm4, OFFSETD
  • packssdw mm2, mm6
  • pmaddwd mm5, VR0GR
  • paddd mm7, mm4
  • psrad mm7, 15
  • movq mm6, TEMPY
  • packssdw mm0, mm7
  • movq mm4, TEMPU
  • packuswb mm6, mm2
  • movq mm7, OFFSETB
  • paddd mm1, mm5
  • paddw mm4, mm7
  • psrad mm1, 15
  • movq ebx, mm6
  • packuswb mm4,
  • movq ecx, mm4
  • packuswb mm5, mm3
  • add ebx, 8
  • add ecx, 8
  • movq edx, mm5
  • dec edi
  • jnz RGBtoYUV

33
IRAM Status
  • Chip
  • ISA has not changed significantly in over a year
  • Verilog complete, except SRAM for scalar cache
  • Testing framework in place
  • Compiler
  • Backend code generation complete
  • Continued performance improvements, especially
    for narrow data widths
  • Application Benchmarks
  • Handcoded kernels better than MMX,VIS, gp DSPs
  • DCT, FFT, MVM, convolution, image composition,
  • Compiled kernels demonstrate ISA advantages
  • MVM, sparse MVM, decrypt, image composition,
  • Full applications H263 encoding (done), speech
    (underway)

34
Backup from Dave Judds Talk
35
VIRAM Tools
  • vas assembler
  • vdis disassembler
  • vsim-isa simulator
  • vsim-db debugger
  • vsim-p performance simulator
  • vsim-syncmemory consistency simulator

36
Compiler Testing
  • C regression test suite (commercial test suite)
  • Scalar emphasis, C conformance
  • All tests pass except
  • Small numerical differences due to lack on 128
    f.p. support
  • C test suite
  • 1167 of 1183 tests execute correctly.
  • 12 failures in compilation undefined variables
  • 4 failures in execution bad answers

37
Compiler Testing
  • Vector regression test suites (CRAY)
  • Specifically tests for vectorization
  • Compares vector and scalar results
  • Easy to isolate problems
  • vector status
  • 59 of 62 tests pass
  • Some minor numerical differences
  • 1 bad answer, 2 integer overflow
  • vector4 status
  • 163 of 165 tests execute correctly
  • 1 bad anwer, 1 illegal use of vector inst.

38
Kernel Performance mvmmatrix-vector
multiplication
64x64, 32 bit floating pt.
39
Mods to mvm code
/ Original code mvm.c / /
Modified code / void mvm
(float A, void mvm (float
restrict A, float X,
float restrict X,
float Y, float
restrict Y, int n,
int n, int acol )
int acol ) int i,j
int i,j float
x_elem lt if ( n
lt 64 ) if ( n lt 64 )
for (i 0 i lt n i)
for (i 0 i lt n i)
pragma shortloop for (j
0 j lt n j) for (j 0 j
lt n j) Yj Ajacoli x_elem
Yj Ajacoli Xi




40
Kernel performance mm_mulmatrix matrix
multiplication
64x64x64, 32 bit float, 1.6 gigaflop theoretical
peak
41
Kernel performance saxpy
  • 32 bit floating point ops

42
Kernel performance motion_estimate
32 bit integer ops, finding the minimum sum of
absolute differences for a reference block and a
region in an image.
No improvement because of spilling.
43
Dongarra loops
  • 100 loops to test compiler vectorization
    capability
  • Rewritten in C by Cray (?)
  • vcc vectorizes 74 loops
  • vcc partially vectorizes 3 loops
  • vcc conditionally vectorizes 3 loops
  • 1 loop not vectorized because vector sin/cos not
    currently available on viram.
  • 19 other loops not vectorized
  • Data provided by Sam Williams

44
Features Remaining
  • Support version 3 isa and version 4 isa
  • Isa changes required by Mips Inc. scalar core
  • Performance simulator only supports oldisa
  • Finish sync support
  • take advantage of Cray implementation
  • VIRAM machine target
  • Allow easier maintainence of frontend and
    optimizer mods for viram
  • User documentation
  • Summary of differences w/Cray compiler
  • Useful options, hints for vector code

45
Performance Features Remaining
  • Additional tuning instruction scheduler
  • Support new SV2 inliner for C/C
  • Shortloop enhancements
  • Reduce spilling
  • Scheduler concern with registers
  • Ordering of blocks for register assignment within
    priority groups
  • Special vector registers carried across calls
  • Loop unrolling for vector loops
  • Tune for key benchmarks

46
Other Future Compiler Features ?
  • Support for speculative execution
  • Compiler extensions for fixed point hardware
  • Support for vector functions vector mlib

47
Summary
  • vcc is a reasonably robust compiler for VIRAM
  • Performance on kernels is good w/appropriate
    directives, some effort for optimum vectorization
  • Need to prioritize remaining work

48
Codegen/optimizer issues for VIRAM
  • Variable virtual processor width (VPW)
  • Variable maximum vector register length (MVL)
  • Vector flag registers treated as 1 bit wide
    vector register
  • Multiple base, incr, stride regs. autoincrement
  • Fixed point arithmetic (saturating add, etc.)
  • Memory consistency
  • New vector instructions not available on SV2

49
Generating Code for Variable MVL
  • Maximum vector length is not specified in IRAM
    ISA.
  • However, compiler assumes mvl at compile time
  • mvl based on vpw
  • mvl assumption dependent on VIRAM-1 hardware
    implementation
  • Recompiling required for future hardware versions
    if mvl changes
  • MVL knowledge useful for code gen and vectorizer
  • register spilling
  • short loop vectorization
  • length-dependent vectorization ( and may
    eliminate safe vector length computation at run
    time)
  • for (i 0 i lt n i)
  • ai ai32

50
Memory consistency
  • Sync instructions

SaV VaS VaV vp RaW WaR WaW
Write a Comment
User Comments (0)
About PowerShow.com