Title: Dimensions of time and space
1Dimensions of time and space
- Micro-scale cell, mineral surface, molecular
borders, leaf, root, - Meso-scale single animal or plant, and its
neighbors, county, community, - Macroscale ecosystems, global system, earth
sphere,
- Geologic time
- Biologic time
- Pedologic time
- Political time
- Seasonal/daily time
- Events
2Environmental cycles
Pedology
Geology
Biology
Hydrology
Toxicology
Chemistry
3Geochemical cycles
- what is a cycle?
- reservoirs
- element fluxes
- flux rates
- retention times
4Dimensions of space
from Morrison2 and Eames2 (1994) Powers of 10
5System times and systemic parameters
example
parameter
system
system time
organisms
element conc. in organism
biochemical and behavioral change
molecular level
min days
death, reaction, appearance
physiol./morpholog. change
cell, simple organism
hrs weeks
reproduction numbers
growth, develop-ment, propagation,
organisms
days months
population
too many old or young ones
age structure
abundance, distribution
weeks years
ecosystem
after Kümmerer (1993)
food webs
structure, dynamics, function
Biocoenosis, biotope, biome
months years
spheres
T, pH, N-cycle
element, energy fluxes, cycles
years decades
6Dimensions of geological time
10-12 10-10 108
10-6 10-4 10-2
100 102 104 106
108 1010 1012
time
7The geological time-scale
Eon
Era
Period
Epoch
100
1.4
12
8Relative age versus absolute age
20 Mio. yrs., lava flow (dike and sill)
14 sediment strata
34 Mio. yrs., intrusive igneous rock body
Stratigraphy versus isotopic dating
9Geologic time radiometric dating
10Biologic time
11Biologic time species evolution
a
b
c
d
e
- Hyracotherium (Eohippus)
- Orohippus
- Mesohippus
- Merychippus
- Pliohippus
- Equus
f
from Ernst (2000)
55 Mio. years
12Biologic time pedologic time
Soils as part of an ecosystem ...
from Schachtschabel et al. (1992)
Structure of a forest ecotope (Hainsimsen-Buchenwa
ld auf basen-armer Braunerde mit Moder aus
Löß/Sandstein-Fließerde des Solling). Area 100
m2 TG (g) after data from Ellenberg
13Biogeochemical cycles in forests
boreal forest 350 a needle forest, mod.
climate 17 a deciduous forest, mod.
climate 4 a Mediterranean macchia 3.8
a tropical rain forest 0.4 a
14System times and systemic parameters
after Kümmerer (1993)
15Pedologic time
weathering and mineral formation formation of
humus types texture formation clay
displacement podsolation redoximorphosis carbonati
sation over salting turbations matter
displacement in a landscape profile
differentiation
16Pedologic time aging of soils under European
conditions
3. transition phase Humus-desintegration
4. Stationary phase, low elasticity
5. transition phase Build-up of destruent-refugia
6. Podsolisation
after Ulrich (1997)
8. Krypto-podsolisation
Downward arrows degradation through acid stress,
soil acidification, nutrient losses Upward
arrows weathering, deposition, management
17Political time time to act
1974 Rawlins Molina discover the ozone
destruction potential of CFCs 1987 Montreal
protocol on reduction of CFCs 1992 Rio
declaration on environment and development 1992 i
nternational agreement on production stop for
CFCs 1994 maximum tropospheric CFC levels
(organic Cl- and Br- molecules) 1995 Nobel price
for Crutzen, Molina, and Rowland for ozone
research 1999 maximum stratospheric CFC levels
Human civilisation 10,000 years Magellan
circumnavigates the Earth 3 years Circumnavigate
Earth today 24 hours Telecommunication speed of
light Apollo project 8 years Environmental
awareness 30 years? Modern election periods 4
years
18Seasonal time daily time
Solar radiation lake water heat budget
lake water stratification plankton
distribution of biomass accumulation
species distribution food web lake type
usage potential for humans Photoperiodicity
light distribution flowering and fruiting
capacity of plants Growth Seasonal growth and
decay gestation periods fruiting
consequences for soils, surface and groundwater,
catchments, land-use,
Figs. Zierold (2001) top Carapax growth
bottom SEM, carapax Limnadia l.
19Catastrophes natural hazards
Frequency trend during the late 20th century A)
number of disasters B) annual costs from Bennett
Doyle (1997)
Meteorite impact Earthquake (tsunamis) Bush fire
(man-made or lightning) Volcanism Mass movements
(land or rockslide, subsidence) Flooding (dam
instability, seawater intrusion, ) Weather
(heavy rain and thunderstorms, hurricanes )
20Natural hazards likeliness
from Bennett Doyle (1997)
21Natural hazards costs benefits
from Bennett Doyle (1997)
22Questions to Dimensions of time and space
- Describe the methods that have been employed to
pinpoint events in geologic time, and discuss the
nature of the dating, including contrasting
accuracies and degrees of quantitativeness. What
methods would you employ to date A) the lunar
mare B) King Tuts sarcophagus C) a granitic
rock from the Erzgebirge? - Global change takes place at several contrasting
rates. How are these rates related to the A)
evolution of biologic species B) compositional
change of the atmosphere C) adoptiveness of
environmental regulations? - Debate the influence of political time scales on
implementation of environmental policy - Why is the rate of biologic change accelerating,
and how will it influence the global to local
ecology? - What steps should the world population take if
astronomers were to predict that in 631 days, a
15-kilometer-diameter asteroid in Earth-crossing
orbit is likely to impact the interior of
Siberia? - How would you go about testing the concept of
uniformitarism? Does it matter if this concept
proves to be incorrect?
23Kurzfassung 2. Vorlesung (Dimensionen von Zeit
und Raum)
- Die Dimensionen von Zeit und Raum sind und
bleiben den meisten Menschen abstrakt. Umso
wichtiger ist es, zu beiden eine möglichst
realistische Vorstellung zu gewinnen. Dabei wird
deutlich, dass es viele parallel aktive
Dimensionen gibt, die eigenen Gesetzen gehorchen.
An Beispielen werden geologische Zeit,
biologische Zeit, pedologische Zeit, politische
Zeit, jahreszeitliche und tägliche Zeit und
spezielle Ereignisse diskutiert. Räumlich bewegen
wir uns vom Makroskaligen (System Erde,
Ökosysteme) über mesoskalige Bereiche
(Einzelorganismus, dessen Nachbarn, eine
Lebensgemeinschaft) bis zu mikroskaligen
Prozessen (Zelle, Mineraloberfläche,
Molekülgrenzen, Blattoberfläche...). Es gilt,
sich bei Projekten aller Art der dabei relevanten
Dimension(en) von Zeit und Raum bewusst zu sein.
Dazu dienen auch die Übungsfragen zum Schluss.
Lesestoff Ernst WG (2000) Time scales,
geologic, biologic, political. In Ernst WG (ed)
Earth Systems. Processes and issues. Cambridge
University Press I 2644 Morris P, Morris P,
Eames C, Eames R (1994) Zehnhoch. Dimensionen
zwischen Quarks und Galaxien. Zweitausendeins,
Frankfurt 155 S.