Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications

1 / 22
About This Presentation
Title:

Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications

Description:

Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy, Robert ... Optical: fluorescence, luminescence. Clear substrates. Glass. Plastics. Formation of Gold Film ... –

Number of Views:113
Avg rating:3.0/5.0

less

Transcript and Presenter's Notes

Title: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications


1
Functional Bioelectronic Interfaces on
Electrolessly Deposited Gold for Bioelectronic
Applications
  • Brian L. Hassler, Neeraj Kohli, Lavanya
    Parthasarathy, Robert Ofoli, Ilsoon Lee, and R.
    Mark Worden.

Chemical Engineering and Materials
Science Michigan State University East Lansing,
Michigan
2
Presentation Outline
  • Background on sensing mechanisms
  • Formation of the gold interface
  • Interface formation/characterization
  • Lipid bilayer with membrane protein
  • Bioelectronic interface with dehydrogenase
  • Summary

3
Sensing Mechanisms
  • Electrochemical oxidation/reduction
  • Conductive substrates
  • Gold
  • Optical fluorescence, luminescence
  • Clear substrates
  • Glass
  • Plastics

4
Formation of Gold Film
  • Treat with oxygen plasma
  • Deposit polyelectrolyte mulilayers
  • Poly(acrylic acid) (PAA)
  • Poly(allylamine hydrochloride) (PAH)
  • Deposit colloidal gold
  • Seed by reductive deposition of gold salt

5
SEM-Time
(after colloidal solution)
(20 minutes seeding)
(40 minutes seeding)
(60 minutes seeding)
6
EDS-Analysis
7
Development and Characterization of Lipid Based
Interfaces
  • Interface development
  • Interface characterization
  • Fluorescence recovery after patterned
    photobleaching (FRAPP)
  • Determine mobile fraction
  • Determine diffusion coefficient

8
Interface Development
  • Lipid bilayer formation
  • DGP 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolam
    ine- N-3-(2-pyridyldithio) propionate
  • DPGP 1,2-di-O-phytanyl-sn-glycero-3-phosphoethano
    lamine
  • NBD-PE 1,2-dioleoyl-sn-glycero-3-phosphoethanolam
    ine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl)
  • (A) Cystamine, DPGP, and DGP in ethanol
  • (B) DPGP and NBD-PE in 0.1 M NaCl

(A)
(B)
9
Fringe patterns using Ronchi ruling
(a) Bleached area
(b) Area Interrogated
  • Excitation wavelength (?488 nm)
  • Emission (?510 nm)
  • Bleaching time (3 1-s pulses)

10
FRAPP Results
  • Diffusion coefficient
  • 0.12 0.0610-8 cm2 s-1
  • Mobile fraction
  • 0.87 0.10

Wright, L. L. Palmer, A. G. Thompson, N. L.
Biophysical Journal 1988, 54, 463-470.
11
Development of Dehydrogenase Based Bioelectronic
Devices
  • Interface development
  • Interface characterization
  • Cyclic voltammetry
  • Chronoamperometry

12
Reaction Mechanism
13
Cyclic Voltammetry on Glass
  • Scan Parameters
  • Initial potential 400 mV
  • Final potential -200 mV
  • Scan rate 100 mV s-1
  • Results
  • Turnover rate 69.8 s-1
  • Sensitivity 2.0 mA mM-1
  • Saturation current 60 mA

14
Cyclic Voltammetry on Polystyrene
  • Scan Parameters
  • Initial potential 400 mV
  • Final potential -200 mV
  • Scan rate 100 mV s-1
  • Results
  • Turnover rate 47.2 s-1
  • Sensitivity 1.7 mA mM-1
  • Saturation current 43 mA

15
Comparison
Hassler and Worden, Biosensors and Bioelectronics
(2005), In press
16
Chronoamperometry
  • Procedure
  • Step change in potential
  • Plot current vs. time
  • Characterization
  • Equation for current decay
  • Evaluation of constants
  • ket Electron transfer constant
  • Q Charge associated with oxidation/reduction
  • ? Surface coverage

IketQexp(-kett)ketQexp(-kett)
?Q/(nFA)
http//www.chemistry.msu.edu/courses/cem837/
17
Chronoamperometry on Glass
  • Potentials
  • Initial 400 mV
  • Final -200 mV
  • Results
  • Electron transfer coefficients
  • ket 3.2102 s-1
  • ket 3.5101 s-1
  • Surface coverage
  • ?? 3.010-12 mol cm-2
  • ?? 3.010-12 mol cm-2

18
Chronoamperometry on Polystyrene
  • Potentials
  • Initial 400 mV
  • Final -200 mV
  • Results
  • Electron transfer coefficients
  • ket 4.2102 s-1
  • ket 2.1102 s-1
  • Surface coverage
  • ?? 6.310-12 mol cm-2
  • ?? 2.110-12 mol cm-2

19
Comparison
Hassler and Worden, Biosensors and Bioelectronics
(2005), In press
20
Summary
  • Designed bioelectronic interfaces
  • Electrolessly deposited gold
  • Lipid bilayers
  • Dehydrogenase enzymes
  • Characterized interfaces
  • Optical Techniques
  • FRAPP
  • Electrochemical
  • Cyclic voltammetry
  • Chronoamperometry

21
Acknowledgements
  • Funding
  • Michigan Technology Tri-Corridor
  • Department of Education GAANN Fellowship
  • Undergraduate participants
  • Sean OBrien
  • Craig Pereira

22
Thank You
23
Polyelectrolyte Multilayers
  • Formation of films
  • Formation of films
  • Multilayer architectures
  • Salt Concentration
  • pH
  • Formation of films
  • Advantages of polyelectrolytes
  • Ease of formation
  • Molecule inclusion
  • Controllable thickness

PAH ()
Water
Water
PAA (-)
Water
Water
24
Lipids Used
DGP
DPGP
NBD-PE
25
Technique
PAH (ve)
Glass slide
26
Cyclic Voltammetry
  • Procedure
  • Linear change in potential
  • Plot current vs. potential
  • Controlled/measured variables
  • Peak current (Ip)
  • Area (A)
  • Scan rate (v)
  • Concentration (C)

http//www.chemistry.msu.edu/courses/cem837/
27
Dehydrogenase Enzymes
  • Dehydrogenase enzymes
  • Catalyze electron transfer reactions
  • Activity easily measured electrochemically
  • Bioelectronic applications
  • Often require cofactor (e.g., NAD(P))
  • Challenge regenerating cofactor after reaction

cofactor
enzyme
NAD(P)H
Dehydrogenase Enzyme Reaction
28
Channel Protein Incorporation
(A)
(B)
(C)
  • Bottom leaflet
  • Upper leaflet
  • Protein Incorporation
  • 510-7 M Valinomycin in NaCl
  • Equilibration Time 1 h

29
Impedance Spectroscopy
  • Interface Design
  • Lipid bilayer
  • Lipids with valinomycin
  • Interface Characterization
  • Lipid bilayer
  • Valinomycin containing bilayer
  • Cm0.5 F cm-2
  • Cdl 4.1 F cm-2
  • Rm 8 K? cm2
Write a Comment
User Comments (0)
About PowerShow.com