Title: Backward Congestion Notification Version 2.0
1Backward Congestion Notification Version 2.0
- Davide Bergamasco (davide_at_cisco.com)
- Rong Pan (ropan_at_cisco.com)
- Cisco Systems, Inc.
- IEEE 802.1 Interim Meeting
- Garden Grove, CA (USA)
- September 22, 2005
2Credits
- Valentina Alaria (Cisco)
- Andrea Baldini (Cisco)
- Flavio Bonomi (Cisco)
- Manoj K. Wadekar (Intel)
3BCN v2.0
- Desire from Mick to see an analytical studyof
BCN stability - BCN v2.0 improvements
- Linear control loop allows analysis of stability
- Simplified detection mechanism
- Reduced signaling rate
- Original BCN framework remains the same
4BCN Background
5Detection Signaling
6Reaction
7Suggested BCN Message Format
0 15
31 ------------
--------------------
DA SA of sampled
frame ----------------
------------
---- SA MAC Address of CP
------------
--------------------
IEEE 802.1Q Tag or S-Tag
------------
--------------------
EtherType BCN Version
Reserved -----------
---------------------
CPID
-----------
---------------------
Qoff
Qdelta ----------
----------------------
Timestamp
----------
------
First N
bytes of sampled frame starting from DA
-------------------------
-------
FCS
-------------------------
-------
8Suggested RLT Tag Format
0 3 7 15
31 -----------
---------------------
DA of rate-limited
frame ----------------
-----------
----- SA of rate-limited frame
-----------
---------------------
IEEE 802.1Q Tag or S-Tag of
rate-limited frame -----------
---------------------
EtherType RLT Version
Reserved -----------
---------------------
CPID
-----------
---------------------
Timestamp EtherType of
rate limited frame --------------
------------------
Payload of rate-limited
frame
------------------------
--------
FCS
------------------------
--------
9Simulation Environment (1)
TCP Bulk
UDP On/Off
Congestion
10Simulation Environment (2)
- Short Range, High Speed DC Network
- Link Capacity 10 Gbps
- Switch latency 1 ?s
- Link Length 100 m (0.5 ? s propagation delay)
- Control loop
- Delay 3 ?s
- Parameters
- W 2
- Gi 4
- Gd 1/64
- Ru 8 Mbps
- Workload
- ST1-ST4 10 parallel TCP connections transferring
1 MB each continuously - SU1-SU4 64 KB bursts of UDP traffic starting at
t 10 ms
11BCNv1.0
12BCNv2.0
Faster Transient Response
Higher Stability _at_ Steady State
13Simulation Environment (3)
- Long Range, High Speed DC Network
- Link Capacity 10 Gbps
- Switch latency 1 ?s
- Link Length 20000 m (100 ? s propagation
delay) - Control loop
- Delay 200 ?s
- Parameters
- W 2
- Gi 4
- Gd 1/64
- Ru 8 Mbps
- Workload
- ST1-ST4 10 parallel TCP connections transferring
1 MB each continuously - SU1-SU4 64 KB bursts of UDP traffic starting at
t 10 ms
14BCNv1.0
15BCNv2.0
Much higher stability _at_ steady state with larger
loop delays
16Summary
- BCN v2 has a number of advantages
- Can be studied analytically
- Better protection of TCP flows in mixed TCP and
UDP traffic scenarios - Detection algorithm independent of Switch
implementation - Better Performance
- Lower signaling frequency (from 10 to 1)
- Better stability
- Increased tolerance to loop delays
- and one disadvantage
- Slower convergence to fairness
17A Control-Theoretic Approach to BCNDesign and
Analysis
18Notation
N Number of Flows C Link Capacity ? Round
Trip Delay w Weight of the Derivitive Pm
Sampling Probability Gi Additive Increase
Gain Gd Multiplicative Decrease Gain
19Block Diagram of BCN Congestion Control
C
q
R
?R
_
Gd
_
Time Delay
Pm
Gi
20Non-linear Differential Equations
Link Control
Source Control
If Fb(t-?) gt 0
If Fb(t-?) lt 0
21Linearization Around Operating Point
- Using feedback control to analyze local stability
- Operating point
- R C/N
- q qeq q 0
- Linearization
- Difficulty depending on sgn(Fb(t-d)), the system
responses are different - Luckily, a piecewise-linear function
- Details are in the appendix
22Block Diagram of BCN Feedback Control
?R
?q
lose 90o margin
Multiplicative Decrease
_
?Fb
Additive Increase
23The Effect Of Zero From Time Domains Eyes
R
q
24Choosing Parameters an example
- Network conditions (10G link)
- N 50
- ? 200us
- Choose parameters such that the feedback loop is
stable with a 35o margin - w 4
- Gi 2Mbps
- Gd 1/128
- Pm 0.01
25Stability Result
lost 90o margin
26Simulation Result Shows A Stable System for N
50 Delay 200us
27Simulation Result Shows System is stable, but on
the verge of oscillation N 50, Delay 1ms
28Change W 4 -gt 1
29Indeed System is stable, but on the verge of
oscillation even for N 50, Delay 200us when w
1.0
30Requests to 802.1
- Start a Task Force on Congestion Management
- Use BCN as a Baseline Proposal
31Appendix
32Linearizing
33Linearizing Additive Increase Function
34Linearizing Additive Increase Function
35Linearizing Multiplicative Decrease Function
36Linearizing Multiplicative Decrease Function
37Issue 1 Non-linearity
Q
- ISSUE Overshoots and undershoots accumulate over
time - SOLUTION Signal only when
- Q gt Qeq dQ/dt gt 0
- Q lt Qeq dQ/dt lt 0
- Easy to implement in hardware just an Up/Down
counter - Increment _at_ every enqueue
- Decrement _at_ every dequeue
- Reduces signaling rate by 50!!
Stop Generation of BCN Messages
-
-
-
-
Qeq
t
38Issue 2 Specific Detection Mechanism
3939
39
39