Case Based Reasoning fault diagnosis for cars - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Case Based Reasoning fault diagnosis for cars

Description:

car type: Golf II Audi A6. construction year: 1993 1995. batterie voltage: 13.6 V 12.5 V ... Audi A6. 1995. 12.5. broken. Reading Class - Machine Learning ... – PowerPoint PPT presentation

Number of Views:248
Avg rating:3.0/5.0
Slides: 26
Provided by: fb17
Category:
Tags: a6 | audi | based | cars | case | diagnosis | fault | reasoning

less

Transcript and Presenter's Notes

Title: Case Based Reasoning fault diagnosis for cars


1
Case Based Reasoningfault diagnosis for cars
  • Sven Burmester, Andreas Goebels

2
Content
  • Introduction
  • Modeling
  • Similarity
  • CBR Cycle
  • Retrieve
  • Reuse
  • Revise
  • Retain
  • Conclusion

3
CBR-Cycle
NewCase
LearnedCase
Retain
Retrieve
Database
RetrievedCase
Tested/repairedCase
General Knowledge
Reuse
Revise
SolvedCase
4
Problem Tasks
CBR System
synthetical tasks
analytical tasks
classification
rating
prognosis
configuration
planning
Diagnosis
design
decisionsupport
5
Example
  • Problem Long distance light failure in cars
  • Attributes Case I Case II
  • --------------------------------------------------
    ---------
  • car type Golf II Audi A6
  • construction year 1993 1995
  • batterie voltage 13.6 V 12.5 V
  • lighter glas OK broken
  • Solution fuse defect lamp defect
  • current Problem brake light failure
  • Attributes new case
  • -------------------------------------------------
  • car type Audi 80
  • construction year 1989
  • batterie voltage 12.6 V
  • lighter glas OK
  • Solution ?

6
Modeling / Case Representation
  • Attribute value representation
  • Object oriented representation
  • Graph representation
  • First order logic representation
  • Hierarchical case representation

7
Modeling Attribute Value Representation
  • Attributes A1, , An
  • Valuations T1, , Tn ? i unknown ? Ti
  • Values a1 ? T1, , an ? Tn
  • Case C ? T1 x x Tn x Solutions
  • Set S C1, , Cn of cases

a1 an s
8
Modeling Attribute Value Representation
  • Attributes

9
Modeling Object oriented Representation
Car Failures
car body
car engine
car illumination
spark plug

rust spots

front illumination
back illumination
left front lamp
right front lamp
10
Similarity
  • Distance Measure dist S2 -gt ?
  • x ? S dist(x, x) 0
  • x, y ? S dist(x, y) dist(y, x)
  • Example Hamming Distance
  • Transformation
  • bijective function f ? -gt 0, 1
  • f(dist(x, y))1 dist(x, y) (dist(x,
    y)1)-1sim(x, y)
  • f(0) 1
  • Similarity Measure sim S2 -gt 0,1
  • x ? S sim(x, x) 1
  • x, y ? S sim(x, y) sim(y, x)

11
CBR-Cycle
NewCase
LearnedCase
Retain
Retrieve
Database
RetrievedCase
Tested/repairedCase
General Knowledge
Reuse
Revise
SolvedCase
12
Similarity Example
  • Problem Similarity between C1 / C2 and the new
    Case Cnew

C1
C2
Cnew
  • Similarity of ordered symbols Difference ?
    Distance
  • dist(1993, 1989) 1993 1989 4
  • sim(1993, 1989) 0.79
  • dist(1995, 1989) 1995 1989 6
  • ? sim(1995, 1989) 0.55

13
Example
  • Similarity of unordered symbols
  • Similarity table sim(x, y) sx, y
  • reflexive function gt symmetric table
  • unknown attributes
  • optimistic / pessimistic / expected value
    strategy

14
Example
C1
Cnew
  • Weight each Valuation w( )
  • sim(C1, Cnew) 0.2 0.50 0.1 0.79
  • 0.3 0.91 0.4 1.00 0.82
  • sim(C2, Cnew) 0.2 0.80 0.1 0.55
  • 0.3 0.99 0.4 0.00 0.44

15
Case Base
  • Problems
  • find enough (reasonable) example cases
  • preprocess the cases correct / efficient
  • find errors / contradictions (consistency of
    Case Base)

16
Retrieval
  • Problem Searching a huge Knowledge Base is time
    consuming
  • sequencial retrieval O(n)
  • ? Find efficient Retrieval methods
  • two-stage retrieval
  • retrieval with kd-trees
  • retrieval with networks
  • retrieval with Fish and Shrink
  • Retrieval tasks
  • most similar case
  • k most similar cases (ordered / unordered)
  • all cases with at least simmin similarity

17
CBR-Cycle
NewCase
LearnedCase
Retain
Retrieve
Database
RetrievedCase
Tested/repairedCase
General Knowledge
Reuse
Revise
SolvedCase
18
Reuse
Solution adaption
Diagnosis situation
no adaption
transformation based
generativ


substitutionaladaption
structuraladaption
19
CBR-Zyklus
NewCase
LearnedCase
Retain
Retrieve
Database
RetrievedCase
Tested/repairedCase
General Knowledge
Reuse
Revise
SolvedCase
20
Revise
  • Could the problem be solved successful?
  • Typical questions
  • contains the case useful new knowledge?
  • occurs the problem frequently?
  • is it possible to store the knowledge in the case
    base?

21
CBR-Zyklus
NewCase
LearnedCase
Retain
Retrieve
Database
RetrievedCase
Tested/repairedCase
General Knowledge
Reuse
Revise
SolvedCase
22
Retain
  • The learning component of CBR
  • Case Base
  • add new case
  • and / or reorganize Case Base

23
Conclusion
  • Hard to define a similarity function
  • Hard to organize the Case Base
  • You can use existing solutions
  • You can find solutions for new problems
  • Incomplete problem descriptions possible
  • Low request time
  • Requires sparse maintenance effort
  • Requires sparse general knowledge
  • Improves over time
  • High user acceptance

24
Literature
  • R. Bergmann, M. Richter Wissensverarbeitung für
    Electronic Commerce, 2001
  • O. Niggemann, B. SteinWissensbasierte Systeme,
    2000
  • T. M. Mitchell
  • Machine Learning, 1997

25
This is the End
  • Thank you for your attention
Write a Comment
User Comments (0)
About PowerShow.com