ACI MD GDS - PowerPoint PPT Presentation

About This Presentation
Title:

ACI MD GDS

Description:

R servation de ressource dans un ASP hi rarchique. D ploiement automatique. DIET en P2P ... Communications dans DIET. Une application pour GDS. 3. Eddy Caron ... – PowerPoint PPT presentation

Number of Views:64
Avg rating:3.0/5.0
Slides: 57
Provided by: frdr79
Category:
Tags: aci | gds | dans

less

Transcript and Presenter's Notes

Title: ACI MD GDS


1
ACI MD GDS
  • Le middleware pour GDS
  • http//graal.ens-lyon.fr/diet

2
Plan
  • Réservation de ressource dans un ASP hiérarchique
  • Déploiement automatique
  • DIET en P2P
  • DIET vs NetSolve
  • VizDIET
  • Communications dans DIET
  • Une application pour GDS

3
Context
  • One long term idea for Grid computing renting
    computational power and memory capacity over the
    Internet
  • Very high potential
  • Need of Problem Solving Environments (PSEs)
  • Applications need more and more memory capacity
    and computational power
  • Some proprietary libraries or environments need
    to stay in place
  • Difficulty of installation for some libraries or
    applications
  • Some confidential data must not circulate over
    the net
  • Use of computational servers accessible through a
    simple interface
  • Need of schedulers
  • Moreover
  • Still difficult to use for non-specialists
  • Almost no transparency
  • Security and accounting issues usually not
    addressed
  • Often application dependent PSEs
  • Lack of standards
  • (CORBA, JAVA/JINI, sockets, ) to build the
    computational servers

4
RPC and Grid-computing ? GridRPC
  • A simple idea
  • RPC programming model for the Grid
  • Use of distributed collections of heterogeneous
    platforms on the Internet
  • For applications require memory capacity and/or
    computational power
  • Task parallelism programming model
    (synchronous/asynchronous) data parallelism on
    servers ? mixed parallelism
  • Needed functionality
  • Load balancing
  • resource discovery
  • performance evaluation
  • Scheduling
  • Fault tolerance,
  • Data redistribution,
  • Security,
  • Interoperability,

5
GridRPC
Client
AGENT(s)
Op(C, A, B)
S1
S3
S4
S2
6
GridRPC (cont)
  • 5 main components
  • Client
  • submits problems to servers
  • Gives users interfaces
  • Server
  • solves problems sent by clients
  • Runs software
  • Database
  • contains dynamic and static information about
    software and hardware resources
  • Scheduler
  • chooses an appropriate server depending of
  • the problem sent
  • the information contained in the database
  • Monitor
  • gets information about the status of the
    computational resources

7
DIET - Distributed Interactive Engineering
Toolbox -
  • Hierarchical architecture for an improved
    scalability
  • Distributed information in the tree
  • Plug-in schedulers

MA
MA
MA
MA
MA
Master Agent
Server front end
A
Direct connection
LA
LA
8
FAST - Fast Agents System Timer -
  • NWS-based (Network Weather Service, UCSB)
  • Computational performance
  • Load, memory capacity, and performance of batch
    queues (dynamic)
  • Benchmarks and modeling of available libraries
    (static)
  • Communication performance
  • To be able to guess the data redistribution cost
    between two servers (or between clients and
    servers) as a function of the network
    architecture and dynamic information
  • Bandwidth and latency (hierarchical)

9
PIF - Propagate Information Feedback -
  • Algorithm from distributed system research
  • PIF Propagate Information Feedback
  • Two steps
  • First phase broadcast phase
  • Broadcast one message through the tree
  • Second phase feedback phase
  • When the leaf has no descendant? feedback
    message is sent to their parent
  • When the parent receives the feedback messages
    from all its descendants, it sends a feedback
    message to its own parent, and so on

10
PIF and DIET - broadcast phase -
MA
1. Broadcast the clients request
2. Sequential FAST interrogation for each LA
3. Resource reservation
11
PIF and DIET - feedback phase -
MA
1. chooses the identity of the most (or list of)
appropriate'' server(s)
2. unused resources are released
12
PIF and DIET - feedback phase -
MA
1. chooses the identity of the most (or list of)
appropriate'' server(s)
2. unused resources are released
13
PIF and DIET - feedback phase -
S12
MA
1. chooses the identity of the most (or list of)
appropriate'' server(s)
2. unused resources are released
14
Server failure and reactivity
MA
A
A
S2 DEAD LINE 1
S12
S15
S7
S2
LA
LA
LA
LA
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
  • Take into account server failure and increase the
    DIET reactivity
  • Time out at the LA level
  • Dead Line 1 ß1 Call_FAST_time ß2 nb_server

15
Hierarchical fault tolerance
MA
S7 DEAD LINE 2
S12
A
A
S12
S15
S7
LA
LA
LA
LA
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
  • No answer after dead line 1
  • Dead Line 2 ß3 level_tree

16
Simulation SimGRID2
  • Real experiments or simulations are often used to
    test or to compare heuristics.
  • Designed for distributed heterogeneous platforms
  • Simulations can enable reproducible scenarios
  • Simgrid a distributed application simulator for
    scheduling algorithm evaluation purposes.
  • Event-driven simulation
  • Fixed or According to a trace values to
    characterize SimGrid resources
  • Processors
  • Network links
  • Simgrid2 A simulator built using SG. This layer
    implements realistic simulations based on the
    foundational SG and is more application-oriented.
  • Simulations are built in terms of communicating
    agents.

17
The DIET SimGRID2 simulator
18
Evaluation of the PIF scheduler
19
Conclusion and future work
  • Conclusion
  • Benefit from distributed system research
  • Fault tolerance into DIET
  • Server failure
  • Branch failure
  • Resource reservation performs a good QoS for
    client requests
  • DIET SimGRID2 simulator
  • Can be reused to validate other algorithms
  • Future work
  • Implementation of some tools to guarantee the
    resource reservation
  • Integrate NWS trace into the simulator
  • How to fix deadlines on a given heterogeneous
    platform ?

20
Plan
  • Réservation de ressource dans un ASP hiérarchique
  • Déploiement automatique
  • DIET en P2P
  • DIET vs NetSolve
  • VizDIET
  • Communications dans DIET
  • Une application pour GDS

21
Automatic deployment
  • Problem Take the right number of components
    (resources) and place them in right way, to
    increase the overall performance of the platform.
  • Motivation how to deploy DIET on the grid ?
  • Foundation Idea given in the article
    Scheduling strategies for master-slave tasking
    on heterogeneous processor grids by C.Banino,
    O.Beaumont, A. Legrand and Y.Robert.

22
Introduction
  • Solution
  • Generate a new structure by arranging the
    resources according to the graph, which gives
    best throughput.
  • For homogeneous platform, the resources should be
    arranged in a binary tree type structure.
  • For heterogeneous platform, more resources should
    be added by checking the bottleneck in the
    structure.

23
Deployment
  • Architectural model -

24
Deployment
  • wi (Mflp/s) Computing power of node Pi
  • bij capacite of link (links are symmetric and
    bidirectional)
  • Sini size of incomming request from client
  • Souti size of outgoing request (response)
  • alphaini fraction of time for the computation
    of incomming request
  • alphaouti fraction of time taken for the
    computaion of outgoing resuest

25
Operations in steady state
  • Calculation of the throughput of a node

26
Calculation of the throughput of a graph
27
Example Calculation of throughput of graph
Min(20,12)
12
Min(12,77)
28
Homogeneous Structures
All nodes have same computing power and bandwidth
link
Star Graph
2 Depth Star Graph
Binary Tree
2 Chain Graph
Chain Graph
29
Homogeneous Structures
  • Simulation results (with 8nodes) -

30
Homogeneous Structures
  • Simulation results (with 32 nodes) -

31
Homogeneous Structures
  • Simulation results (for Binary graph) -

32
Heterogeneous Networks
33
Throughput of network
25
R 2
30
25
25
30
25
25
30
1?200
1?40
1?15
34
Throughput of network by adding LAs
24
R 2
R 2.2
R 2.65
17.88
19
15
0.11
0.052
29
0.88
1?40
1?200
1?15
35
Heterogeneous Network
36
Experimental results
  • 1 client with n requests
  • no steady state (MA performed good)
  • n clients with n requests
  • no steady state (MA performed good)
  • Pipeline effect
  • not enough nodes (clients)
  • Buffered the requests at MA
  • a new client implementation to make an effect of
    steady state
  • MA failed with 960 requests (due to memory
    problem)

37
Experimental results
38
Conclusion
  • Select best structure
  • Improve the throughput of the network
  • Predict the performance of the structure
  • Can find the effects on performance if different
    changes are done in the structure configuration
  • Bottleneck is not caused at MA

39
Conclusion
  • Homogeneous
  • Binary tree type structure is best
  • Number of nodes is proportionate to number of
    servers
  • Star graph type structure, when nodes are less
    and servers are more than 60
  • Heterogeneous
  • Find the bottleneck
  • Improve the throughput
  • Modelizing the DIET

40
Future work
  • Calculate the throughput of structures with
    multi-client and multi-master agents.
  • Dynamic updating with the use of package GRAS
  • Timer addition into the tool to get real value
    for CORBA implementation of DIET
  • Check the LA and SeD as the cause of bottleneck
  • Combine scheduling and deployment to increase the
    performance
  • Validation of work by real deployment.

41
Automatic Deployment first tool
42
Plan
  • Réservation de ressource dans un ASP hiérarchique
  • Déploiement automatique
  • DIET en P2P
  • DIET vs NetSolve
  • VizDIET
  • Communications dans DIET
  • Une application pour GDS

43
DIET en P2P
  • Existant
  • Multi-MA disponible avec connection en JXTA
  • Docs disponibles
  • Archive disponible diet-0.7_beta-dev-jxta.tgz
  • TODO list
  • Evaluer les performances
  • Vérifier le respect des coding standard
  • Intégration au CVS DIET
  • Briser la contrainte 1 composant JXTApour 1
    composant DIET
  • Algorithmes intelligents pour le parcours des
    MA ?

MA
MA
MA
Connexions JXTA
MA
MA
A
LA
LA
LA
44
Plan
  • Réservation de ressource dans un ASP hiérarchique
  • Déploiement automatique
  • DIET en P2P
  • DIET vs NetSolve
  • VizDIET
  • Communications dans DIET
  • Une application pour GDS

45
DIET vs NetSolve
  • Scripts de déploiement.
  • Utilisation de CVS pour mettre à jour les
    fichiers de configuration.

clients
paraski
agents servers
sunlabs
clients
ls
46
DIET vs NetSolve
47
DIET vs NetSolve
  • TODO List
  • Tests avec API asynchrone.
  • 'Multithreader' le client.
  • Amélioration des statistiques (indice de
    dispersion).
  • Amélioration des scripts de déploiements
    (fichiers de configuration DIET et omniORB).
  • Expliquer les résultats de NetSolve
  • Expliquer le problème des 40 clients de DIET
  • Tests sur les SPARC
  • Tests icluster2 ?

48
Plan
  • Réservation de ressource dans un ASP hiérarchique
  • Déploiement automatique
  • DIET en P2P
  • DIET vs NetSolve
  • VizDIET
  • Communications dans DIET
  • Une application pour GDS

49
VizDIET
  • Chaque LogManager collecte les infos de son agent
    et les envoie au LogCentral situé en dehors de la
    structure DIET.
  • VizDiet
  • outil de visualisation en Java
  • Interraction sur la plate-forme

50
VizDIET 1.0
  • Intégration de LogService (LogManager/LogCentral)
    dansles agents DIET
  • Transfert de messages depuis l'agent par
    l'intermédiaire du LogManager
  • pas de stockage sur disque
  • Etude vizPerf vs vizDIET
  • Conclusion vizPerf trop éloigné de la structure
    DIET

51
VizDIET 2.0
  • VizDiet collectera les infos de la structure DIET
    par LogCentral et les affichera en temps réel.
  • VizDiet doit pouvoir aussi agir sur la structure
    en générant des scripts XML (flèche rouge) ou en
    modifiant des infos XML existantes (flèche bleue)

52
Screenshot
53
Plan
  • Réservation de ressource dans un ASP hiérarchique
  • Déploiement automatique
  • DIET en P2P
  • DIET vs NetSolve
  • VizDIET
  • Communications dans DIET
  • Une application pour GDS

54
Du neuf dans les communications DIET
  • Asynchrone
  • Finaliser la compatibilité GridRPC (erreur,
    handle,)
  • Bug sur le diet_wait_and ?
  • Fuites mémoires ? (test déchelle)
  • PadicoTM
  • Compilation/Test
  • Intégration dans DIET en cours
  • Limitation des plate-formes utilisables
  • Bug sur le dechargement des modules (lié à la
    fonction dlopen selon la libc utilisée)

55
Plan
  • Réservation de ressource dans un ASP hiérarchique
  • Déploiement automatique
  • DIET en P2P
  • DIET vs NetSolve
  • VizDIET
  • Communications dans DIET
  • Une application pour GDS

56
Une application pour GDS ?
  • GriPPS Grid Protein Pattern Scanning
  • Application de bio-informatique
  • Pattern scanning
  • Caractéristiques
  • Tâches répétitives, courtes mais très nombreuses
  • Entrées/sorties
  • fichiers  texte 
  • De quelques Mos à plusieurs Gos
  • Demande dun temps de réponse faible

57
FAST
Write a Comment
User Comments (0)
About PowerShow.com