Job Shop Reformulation of Vehicle Routing - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Job Shop Reformulation of Vehicle Routing

Description:

Transition time Distance. Tool. Scheduler 5.1. Scheduling Technology: slack-based heuristics. edge finder. timetable constraints. TSP graph transformations ... – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 24
Provided by: evgenys4
Category:

less

Transcript and Presenter's Notes

Title: Job Shop Reformulation of Vehicle Routing


1
Job Shop Reformulation of Vehicle Routing
  • Evgeny Selensky

2
Details of the Talk
  • PRAS project
  • Problems addressed
  • Two-level Reformulation
  • TSP graph transformations
  • Experiments and results

3
PRAS project
  • Problem Reformulation and Search
  • Principal Investigator Patrick Prosser
  • Web site www.dcs.gla.ac.uk/pras
  • Industrial collaborator , France

4
Why bother?
  • Try to understand problem structure
  • Improve performance of solution techniques

5
Vehicle Routing Problem
  • N identical vehicles of capacity C
  • M customers with demands Digt0
  • Each vehicle serves subset of customers
  • Side constraints may be present (e.g., time
    windows, precedence constraints)
  • Find tours for subset of vehicles such that
  • all customers served, each once
  • one tour per vehicle
  • total distance minimal

6
Job Shop Scheduling Problem
  • M machines, i 1..M, M ? 2
  • N jobs each of S operations, j 1..S, of
    duration dij
  • ? j Oij lt Oij1 (chain-type precedence
    constraints)
  • ? j Oij requires specific resource
  • No preemption
  • Minimise makespan LatestEnd - EasliestStart
  • Open shop relaxation
  • ? j start(Oij) lt start(Oij1) ? start(Oij) gt
    start(Oij1)
  • Multipurpose machines
  • ? j Oij requires alternative resource

7
Reformulation
  • Machine Vehicle
  • Operation Visit
  • Operation duration Service time
  • Transition time Distance

8
Tool
  • Scheduler 5.1
  • Scheduling Technology
  • slack-based heuristics
  • edge finder
  • timetable constraints

9
TSP graph transformations
  • Purpose build part of transition times into
    operation durations to improve performance of
    temporal reasoning
  • Based on preservation of cost

10
Example. Order independent transformation
11
It preserves cost! Proof.
1. Assume
12
2. Now let
Possible 4-node cycles 1-2-3-4-1,
1-2-4-3-1, 1-3-2-4-1, 1-3-4-2-1, 1-4-2-3-1,
1-4-3-2-1.
Consider 1-2-3-4-1
13
3. Finally,
We can always split any cycle into a set of pairs
of 3-node cycles with a common edge and starting
node as before
Therefore for any n
14
Example. Order dependent transformation
Lexicographic ordering of nodes A,B,C,D
Due to Patrick Prosser
15
A Few More Remarks
  • Both transformations change time bounds on
    operations
  • We dont know yet how order independent
    transformation changes time bounds
  • Order dependent transformation makes a symmetric
    change
  • earliest start
  • latest end

16
Experiments. Data generation
  • Based on M.Solomons suite of 56 VRPTW benchmarks
  • pure problems
  • classes C1, R1, RC1 small capacities, short TWs
  • classes C2, R2, RC2 large capacities, wide TWs
  • changed capacity
  • classes C1, R1, RC1 reduced capacities
  • classes C2, R2, RC2 increased capacities
  • changed TWs
  • classes C1, R1, RC1 TW width reduced by
    5
  • classes C2, R2, RC2 TW width increased by
    a factor of 2
  • changed capacity and TWs
  • classes C1 RC2 analogously

17
Experiments. Tools and Layout
  • Windows NT, Intel Pentium III 933 MHz, 1Gb RAM
  • Scheduler 5.1
  • Search for first solutions
  • LDS
  • slack-based heuristics
  • Time Limit 600s
  • Run each instance 4 times
  • No transformation
  • Lex ordering
  • MaxMin ordering
  • MinMin ordering

18
Results I
Ranges, means and medians of
Table 1. Pure VRPTWs
  • Characteristic C1 C2 R1 R2 RC1 RC2
  • Range, Lex -13..187 -110..39 -313..246 -114..148
    -354..235 -194..163
  • Range, MaxMin -46..184 -74..38 -361..337 -258..112
    -135..177 -233..184
  • Range, MinMin -13..124 -227..37 -323..166 -137..27
    4 -239..247 -144..205
  • Mean, Lex 25.8 -7.9 -19.5 13 -7 -9.5
  • Mean, MaxMin 19.6 3.4 -5.7 -36.7 61.25 34.9
  • Mean, MinMin 21 -23.9 -13.75 61 2.375 3.8
  • Median, Lex 0 2 -2 14 13 -18
  • Median, MaxMin 0 6.5 20.5 45 88 61.5
  • Median, MinMin 0 1 -22 62 11.5 -19.5

19
Results II
Table 2. Influence of capacity
  • Characteristic C1 C2 R1 R2 RC1 RC2
  • Range, Lex -1..187 -110..39 -313..246 -114..148 -
    354..235 -194..163
  • Range, MaxMin -66..184 -74..38 -361..337 -258..112
    -135..177 -233..184
  • Range, MinMin -13..124 -227..37 -323..166 -137..27
    4 -239..247 -144..205
  • Mean, Lex 35.3 -7.9 -19.5 13 -7 -9.5
  • Mean, MaxMin 23.8 3.4 -5.7 -36.7 61.25 34.9
  • Mean, MinMin 24.6 -23.9 -13.75 61 2.375 3.8
  • Median, Lex 1 2 -2 14 13 -18
  • Median, MaxMin 6 6.5 20.5 45 88 61.5
  • Median, MinMin 3 1 -22 62 11.5 -19.5

20
Results III
Table 3. Influence of time windows
  • Characteristic C1 C2 R1 R2 RC1 RC2
  • Range, Lex -300..117 -184..110 -376..267 -139..26
    5 -216..102 -370..474
  • Range, MaxMin -305..27 -8..418 -513..332 -237..98
    -243..196 -461..263
  • Range, MinMin -284..124 -258..194 -341..67 -196..1
    80 -347..136 -314..342
  • Mean, Lex -16.7 -7.9 -4.6 41.2 -53.9 70.1
  • Mean, MaxMin -23 82.8 -77 -21 -69.9 -41.8
  • Mean, MinMin -13.7 -16.5 -75.6 25.8 -90.1 63
  • Median, Lex 2 2 10.5 53 -56 87
  • Median, MaxMin 12 16 -129.5 42 -127 -48
  • Median, MinMin 3 1 -18.5 48 -24 118

21
Results IV
Table 4. Influence of capacity and time windows
  • Characteristic C1 C2 R1 R2 RC1 RC2
  • Range, Lex -300..19 -164..118 -376..267 -139..265
    -216..102 -370..474
  • Range, MaxMin -305..26 -8..463 -513..332 -237..98
    -243..196 -461..263
  • Range, MinMin -284..44 -71..224 -341..67 -196..180
    -347..136 -314..342
  • Mean, Lex -36 8.3 -4.6 41.2 -53.9 70.1
  • Mean, MaxMin -34.6 87.1 -77 -21 -69.9 -41.8
  • Mean, MinMin -35 19.4 -75.6 25.8 -90.1 63
  • Median, Lex -1 2 10.5 53 -56 87
  • Median, MaxMin -1 16 -129.5 42 -127 -48
  • Median, MinMin 0 1 -18.5 48 -24 118

22
Analysis of Results
  • Influence of changing capacity alone dominated by
    influence of changing TW width
  • Transformation tends to improve solution quality
    with small TWs.
  • Lex improves on C1, RC1, degrades on R1
  • MaxMin improves on C1, R1, RC1
  • MinMin improves on C1, R1, RC1
  • Conversely, with large TWs solution quality
    degrades
  • Lex degrades on R2, RC2, the same on C2
  • MaxMin degrades on C2, R2 (still negative
    but worse), improves on RC2 (negative)
  • MinMin degrades on C2 (still negative but
    worse), RC2, improves on R2 (positive but better)

23
Acknowledgements
  • Thanks to Chris Beck ( ) for his
    suggestions on the order independent
    transformation
Write a Comment
User Comments (0)
About PowerShow.com