Title: High Dimensional Chaos
1High Dimensional Chaos
- Tutorial Session
- IASTED International Workshop on
- Modern Nonlinear Theory (Bifurcation and Chaos)
- Montreal 2007
Zdzislaw Musielak, Ph.D. and Dora Musielak,
Ph.D. University of Texas at Arlington
(UTA) Arlington, Texas (USA)
2Lecture 3
Objective Review other systems that show
high-dimensional chaos (HDC) and
determine basic routes to HDC
- 4D Rössler system
- Other HD Lorenz models
- Another HD Duffing system
- Double pendula
- Other interesting HD systems
- Routes to chaos
- Summary
34D Rössler System
- First HD system with two positive Lyapunov
- exponents was introduced by Rössler (1979)
4Strange Attractor I
First-return map to a Poincaré section
Plane projection of the strange attractor
Strange attractor is characterized by two
positive, one negative and one zero Lyapunov
exponents.
5Strange Attractor II
AIHARE, Electrical Eng. Co., Japan
6HD Lorenz Models I
Li, Tang and Chen (2005) generalized the 3D
Lorenz model by adding a new variable that
couples to the second equation of Lorenzs
equations and derived a 4D Lorenz model.
They designed a circuit that approximates the 4D
system.
7Theory vs Experiment
Li, Tang and Chen (2005)
8HD Lorenz Models II
9D Lorenz model (Reiterer et al. 1998) Model
describes a 3D Rayleigh-Benard convection
Hyperchaos at R 43.3
Period-doubling cascade
Model does not conserve energy in dissipationless
limit (Roy Musielak 2006)
9Another HD Duffing System
Savi Pacheco (2002)
10Phase Portraits
Savi Pacheco (2002)
11Double Pendula I
Initial speeds, left Initial speeds, right
main arm 400.0 degrees/sec main arm 400.1
degrees/sec secondary arm 0.0 degrees/sec
secondary arm 0.0 degrees/sec
Ross Bannister www.rdg.ac.uk/ross
12Double Pendula II
Bannister (2005)
13Coupled Logistic Maps
General route to HDC - Harrison Lai (1999,
2000)
Pazo et al (2001)
14Coupled Rössler Systems
Harrison Lai (2000)
15Modified Chuas Circuit
Original Chuas circuit
Modified Chuas circuit
Thamilmaran et al (2004)
16Experimental Results
Phase portraits
Poincaré sections
Power spectra
Thamilmaran et al (2004)
17Theoretical Results
Thamilmaran et al. (2004)
18Other Systems with HDC
- Coupled Ikeda maps
- Chaotically driven Zaslavsky map
- Delayed Henon maps
- Coupled three or more Lorenz systems
- Coupled two or more lasers
- Phonic integrated circuits
- Miniature eye movements
- Excitable physiological systems
- Spreading of rumor
-
19Types and Properties of HD Systems
- 1. Strange attractors with dimensions dcor gt 3
but only one positive Lyapunov exponent - no
hyperchaos. - 2. Strange attractors with dimensions dcor gt 3
and two or more positive Lyapunov exponents -
systems with hyperchaos.
HD and LD systems behave differently and chaos is
persistent (no windows of periodicity) in HD
dynamical systems (Albers et al 2005)
20Routes to HDC I
- Same as routes for LD systems
- (a) Period-doubling
- (b) Quasi-periodicity
- (c) Intermittency
- (d) Chaotic transients
- (e) Crisis
- First LD chaos by one of the above routes and
then - to HD chaos.
- Harrison Lai (1999) and Pazo et al (2001)
21Routes to HDC II
- Quasi-periodicity torus doubling torus
merging chaos - Venkatesan Lakshmanan (1998)
- Quasi-periodicity torus 3-period window
chaos - Musielak et al (2005)
- Sequence of Neimark-Sacker bifurcations
- Alberts Sprott (2004)
22SUMMARY
- High-dimensional (HD) dynamical systems that
exhibit chaos can be constructed by adding
degrees of freedom to low-dimensional dynamical
systems. - High dimensional chaos (HDC) is observed in HD
nonlinear systems whose strange attractors have
dimensions dcor gt 3. - Two types of systems with HDC have been
identified, those with and without hyperchaos. - HD systems may transition to chaos via one of the
routes - known for LD systems or via new routes
four new - routes have been identified, others
still remain to be - discovered.
23Acknowledgments
- Special thanks to Professor Ahmad M. Harb
- and the organizers of the IASTED
International Workshop on Modern Nonlinear Theory
for the invitation to present this tutorial.
Support for this work was provided by NASA /
MSFC, US Army and The Alexander von Humboldt
Foundation in Germany.
24References
- Albers, D.J., Sprott, J.C. and Crutchfield, J.P.,
2005, arxiv.org/abs/nlin.CD/0504040 - Albers, D.J. and Sprott, J.C., 2006, Physica D,
223, 194 - Argyris, J., Faust, G. and Haase, M., 1993, Phil.
Trans. Phys. Sci. Eng., 344, 207 - Benner, J.W., 1997, Ph.D. Dissertation, The
University of Alabama in Huntsville - Chen, Z.-M.and Price, W.G., 2006, Chaos, Solitons
and Fractals, 28, 571 - Curry, J.H., 1978, Commun. Math. Phys., 60, 193.
- Curry, J.H., 1979, SIAM J. Math. Anal., 10, 71.
- Eckmann, J.P., 1981, Rev. Mod. Phys., 53, 643
- Feigenbaum, M.J., 1979, J. Stat. Phys., 21, 669
- Feigenbaum, M.J., 1980, Universal Behavior in
Nonlinear Systems, Los Alamos Science, 1, 4-27 - Gilmore, R., 1998, Rev. Mod. Phys., 70, 1455
- Greborgi, C., Ott, E. and Yorke, J.A., 1983,
Physica D, 7, 181 - Hanon, M., 1969, Q. Appl. Math., 27, 135
- Hanon, M., 1976, Comm. Math. Phys., 50, 6977
- Harrison, M.A. and Lai, Y.C., 1999, Phys. Rev. E,
59, 3799 - Harrison, M.A. and Lai, Y.C., 2000, Int. J.
Bifur. Chaos, 10, 1471 - R.C. Hilbron, R.C., 1994, Chaos and Nonlinear
Dynamics, Oxford, Oxford Uni. Press - Howard, L.N. and R.K. Krishnamurti, R.K., 1986,
J. Fluid Mech., 170, 385 - Humi, M., 2004, arXivnlin.CD/0409025 v1
25References (contd)
- Musielak, D.E., Musielak, Z.E. and Kennamer,
K.S., 2005, Fractals, 13, 19 - Musielak, D.E., Musielak, Z.E. and Benner, J.W.,
2005, Chaos, Solitons and Fractals, - 24, 907
- Newhouse, S.E., Ruelle, D. and Takens, F., 1978,
Commun. Math. Phys., 64, 35 - Ott, E., 1993, Chaos in Dynamical Systems,
Cambridge, Cambridge Uni. Press - Pazo, D., Sanchez, E. and Matias, M., 2001, Int.
J. Bifur. Chaos, 11, 2683 - Poincare, H., 1890, Acta Math., 13,1
- Pommeau, Y. and Manneville, P., 1980, Commun.
Math. Phys., 74, 189 - Reiterer, P., Lainscsek, C. Schurrer, F.
Letellier, C. and Maquet, J., 1998, J. Phys. A
Math. Gen., 31, 7121 - Roy, D. and Musielak, Z.E., 2007, Chaos, Solitons
and Fractals, 31, 747 - Roy, D. and Musielak, Z.E., 2007, Chaos, Solitons
and Fractals, 32, 1038 - Roy, D. and Musielak, Z.E., 2007, Chaos, Solitons
and Fractals, 33, 138 - Rossler, O., 1979, Phys. Lett., 71, 155
- Rossler, O., 1983, Z. Naturforsch., 38, 126
- Ruelle, D. and Takens, F., 1971, Commun. Math.
Phys., 20, 167 - Savi, M.A. and Pacheco, P.M.C.L., 2002, J. Braz.
Soc. Mech. Sci., 24, - Saltzman, B., 1962, J. Atmos. Sci., 19, 329
- Schmutz, M. and Rueff, M., 1984, Physica D, 11,
167 - Thamilmaran, K., Lakshmanan, M. and Venkatesan,
A., 2004, Int. J. Bifur. Chaos.,
26References (contd)
- Thompson, J.M.T. and H.B. Stewart, H.B., 1986,
Nonlinear Dynamics and Chaos, - New York, John Wiley Sons, Inc.
- Tong, C. and Gluhovsky, A., 2002, Phys. Rev. E,
65, 046306-1-11 - Treve, Y.M. and Manley, O.P., 1982, Physica D, 4,
319 - Tucker, W., 1999, C.R. Acad. Sci., 328, 1197
- Ueda, Y., 1979, J. Stat. Phys., 20, 181
- Ueda, Y., 1980, in New Approaches to Nonlinear
Problems in Dynamics, edited by P. J. Holmes
(Siam, Philadelphia), p.311