Chapter 12 AcidBase Titrations - PowerPoint PPT Presentation

1 / 51
About This Presentation
Title:

Chapter 12 AcidBase Titrations

Description:

Chapter 12 Acid-Base Titrations. Strong Acid Strong Base Titrations. Weak Acid Strong Base ... pink colorless ... Remember when using visual indicators you must: ... – PowerPoint PPT presentation

Number of Views:177
Avg rating:3.0/5.0
Slides: 52
Provided by: frank172
Category:

less

Transcript and Presenter's Notes

Title: Chapter 12 AcidBase Titrations


1
Chapter 12 Acid-Base Titrations
  • Strong Acid Strong Base Titrations
  • Weak Acid Strong Base
  • Weak Base Strong Acid

2
Example titration of HCl with NaOH
  • Shape of the titration curve Conceptually this
    is very similar to the precipitation reaction
    curve we discussed in Chapter 7.
  • Lets start with the MBE and CBE.
  • CBE H Na Cl- OH-
  • MBE Na OH- neglecting Kw.
  • Cl- H

3
Consider Na and Cl- throughout Titration
Substituting back into the CBE
4
CBE H Na Cl- OH-
5
Before Equivalence Point
  • All of OH- consumed by excess H

6
At the equivalence point
  • All of H is now consumed

7
After the equivalence point
  • Excess OH-

8
At any point on the titration curve, the fraction
of H titrated (?) with HO- is
9
Example calculate the pH of the titration of
50.00 mL of 0.100 M HCl with 0.100 M NaOH
10
b) 50.00 mL of NaOH added
11
c) 60.00 mL of NaOH added
12
Titration curve strong acid titrated with strong
base
  • Note that only for the strong base strong acid
    case will the equivalence point pH be 7.00.

13
Titration of a strong base (e.g. NaOH) with a
strong acid (e.g. HCl) will appear as
14
Location of the equivalence point.
  • Acid-Base indicators respond to pH changes based
    on color changes. These indicators are all weak
    acids themselves.
  • Phenolphthalein p 240.
  • P2- 2H H2P pKa ? 8
  • pink colorless
  • The titration error occurs because the end point
    is ?pH 8 while the true equivalence point is pH
    7.

15
(No Transcript)
16
(No Transcript)
17
Remember when using visual indicators you must
  • Use as little as possible since they are acids or
    bases and will react with your analyte.
  • Pick the appropriate indicator. Based on expected
    equivalence point pH. See Table 12-4.
  • We will skip a quantitative discussion of
    titration error.

18
Titration of a Weak Acid (HA) with a Strong Base
(NaOH).
  • Similar considerations are at work here, well
    treat this case less rigorously. Consider the
    following example
  • 25.00 mL of 0.150 M CH3COOH (Ka 1.75e-5) is
    titrated with 0.200 M NaOH.
  • Calculate the pH of the titration solution at

19
a) 00.00 mL
  • The starting pH is simply,
  • HA H A-
  • 0.150 x x x
  • 1.75e-5 x2/0.150-x
  • x 1.62e-3 H
  • pH 2.793 this is the starting pH of this
    experiment.

20
b) 10.00 mL
  • First we must consider the volume of the
    equivalence point to (Ve) know where we are on
    the titration curve
  • Ve 25.00 mL 0.150 M HA 1/0.200 M NaOH
    18.75 mL
  • _at_10.00 mL we are before the titration eq. point.
  • Initial moles HA 25.00 mL 0.150 M HA 3.75
    mmol
  • Added OH- 10.00 mL 0.200 M OH- 2.00 mmol
  • HA OH- ? H2O A-
  • 3.75 mmol 2.00 mmol
  • -2.00 mmol -2.00 mmol 2.00 mmol
  • 1.75 mmol 0 2.00 mol

21
b) 10.00 mL continued
  • note that MBE is HA F HA A-
  • or in terms of amount (3.75 2.00 1.75) mmol
  • ?3.75 1.75 mmol 2.00 mmol
  • HA 1.75 mmol/(35.00 mL) 5.00e-2 M
  • A- 2.00 mmol/35.00 mL 5.71e-2 M

22
b) 10.00 mL continued
  • Essentially what we have is a buffer system.
  • Ka 1.75e-5 HA-/HA
  • H5.71e-2/5.00e-2
  • H 1.53e-5
  • pH 4.815

23
c) 18.75 mL
  • The volume of the equivalence point to (Ve) is
  • Ve 25.00 mL 0.150 M HA 1/0.200 M NaOH
    18.75 mL
  • Note that HA molinitial A- mol eq. pt.
  • 25.00 mL 0.150 M HA 3.75 mmol HA or A-
  • Total volume 18.75 25.00 mL 43.75 mL
  • A- 3.75 mmol/43.75 mL 8.57e-2 M

24
pH at equivalence point
  • All of HA is consumed left with A- which
    undergoes hydrolysis.
  • A- H2O HA OH-
  • 8.57e-2 -- 0 0
  • -x x x
  • Kb Kw/Ka 5.71e-10 x2/8.57e-2 x
  • x 7.00e-6 M
  • pOH 5.155
  • pH 8.845 note that it is not 7.00.

25
d) 25.00 mL
  • We are past the end point so we should expect a
    region in which we have excess OH-.
  • Mol excess OH- mol OH- added initial mol HA
  • 25.00 mL 0.200 M NaOH 5.00 mmol OH-
  • Mol excess OH- 5.00 mmol 3.75 mmol 1.25
    mmol
  • OH- 1.25 mmol / 50.00 mL 2.50e-2 M
  • pOH 1.602
  • pH 12.398

26
Fig 12-2
27
Role of Ka and HAinitial Figure 12-3
  • This makes the titration of low concentrations
    and/or high pKa acids difficult.

28
Titration of a weak base with a strong acid.
  • Consider the titration of NH3 with HCl.
  • Rxn NH3 HCl ? NH4 Cl-
  • Example 50.00 mL of 0.222 M NH3 (Ka NH4
    5.5e-10) is titrated with 0.155 M HCl.

29
a) 0.00 mL
  • NH3 H2O NH4 OH-
  • 0.222 -- 0 0
  • -x x x
  • Kb 1.00e-14 / 5.5e-10 x2 / 0.222-x
  • x OH- 2.01e-3 M
  • pH 11.30

30
b) 50.00 mL 0.155 M HCl added
  • First calculate volume of equivalence point Ve
  • Ve 50.00 mL 0.222 M NH3 1/0.155 M
  • 71.61 mL HCl solution
  • We can see that we are before the end point, i.e.
    excess NH3.
  • Initial mol NH3 50.00 mL 0.222 M 11.1 mmol
  • Added mol HCl 50.00 mL 0.155 M 7.75 mmol
  • Note that ? mol a/ mol b 7.75/11.1 0.698

31
pH at 50.00 mL 0.155 M HCl added
  • Excess NH3 11.1 7.75 mmol 3.35 mmol
  • NH3 3.35 mmol / 100.00 mL 3.35e-2 M
  • must calculate NH4
  • NH3 HCl ? NH4 Cl-
  • 11.1 7.75 0 0
  • -7.75 -7.75 7.75 7.75
  • mol NH4 7.75 mmol
  • NH4 7.75 mmol / 100.00 mL 7.75e-2 M

32
This a pH region where both NH3 and NH4 are
present
  • Ka HNH3 / NH4
  • 5.5e-10 H 3.35e-2 M / 7.75e-2 M
  • H 1.27e-9
  • pH 8.90

33
pH pKa at ½ Ve added
  • What happens at 35.805 mL (½ 71.61 mL) of 0.155 M
    HCl added?
  • Initial mol NH3 50.00 mL 0.222 M 11.1 mmol
  • Added mol HCl 35.805 mL 0.155 M 5.55 mmol
  • Mol NH3 left 11.1 5.55 mmol 5.55 mmol
  • Ka HNH3 / NH4
  • H 5.55mmol / 5.55 mmol (vol. of solution
    cancel)
  • pKa pH 9.26

34
c) pH at the equivalence point, Ve, 71.61 mL of
0.155 M HCl added
  • NH3 11.1 mmol / 121.61 mL 9.13e-2 M or ?
    1
  • Here all of NH3 is consumed and we are left with
  • NH4 NH3 H
  • 9.12e-2M 0 0
  • -x x x
  • 5.5e-10 x2 / 9.12e-2 x
  • x 7.08e-6 M
  • pH 5.15

35
d) 80.00 mL of 0.155 M HCl.
  • Initial mol NH3 11.1 mmol
  • Added mol H 80.00 mL 0.155 M 12.4 mmol
  • ? 12.4/11.1 1.12
  • Excess H 12.4 11.1 mmol 1.3 mmol
  • H 1.3 mmol / 130.00 mL 0.010 M
  • pH 2.00

36
Summary of titration of 50.00 mL of 0.222 M NH3
with 0.155 M HCl.
  • Vol of HCl added pH
  • a) 0.00 mL 11.30
  • 35.81 mL 9.26
  • b) 50.00 mL 8.90
  • c) 71.61 mL 5.15
  • d) 80.00 mL 2.00

37
Buffer region
Excess HCl
38
Diprotic systems.
  • In cases where the polyprotic acid has well
    separated pKa vaules, each step can be treated
    individually.
  • Example Consider the titration of 50.00 mL of
    0.050 M H2CO3 (Ka1 4.5e-7, Ka2 5.6e-11) with
    0.100 M NaOH.

39
a) 0.00 mL
  • The solution consists only of 0.050 M H2CO3.
  • H2CO3 H HCO3-
  • 0.050 M 0 0
  • -x x x
  • 4.5e-7 x2 / 0.050 x
  • x 1.5e-4
  • pH 3.82

40
b) 10.00 mL 0.100 M NaOH solution
  • Calculate the mol OH- added and initial moles of
    H2CO3.
  • Initial mol H2CO3 50.00 mL 0.050 M 2.5 mmol
  • Added mol OH- 10.00 mL 0.100 M 1.00 mmol
  • Excess mol H2CO3 2.5 1.00 mmol 1.5 mmol
  • H2CO3 1.5 mmol / 60.00 mL 2.5e-2 M
  • Must realize that this is a buffer system (why?).

41
Realizing that this is a buffer system we must
calculate HCO3-
  • From an MBE consideration
  • initial mol H2CO3 mol H2CO3 left mol HCO3-
    formed
  • 2.5 mmol mol H2CO3 mol HCO3- 1.5 x
  • x 1.0 mmol
  • HCO3- 1.0 mmol / 60.00 mL 1.67e-2
  • Ka1 4.5e-7 HHCO3- / H2CO3
  • 4.5e-7 H1.67e-2 / 2.5e-2 note that volumes
    of solution cancel
  • H 6.75e-7
  • pH 6.17

42
c) 25.00 ml added
  • Initial mol H2CO3 50.00 mL 0.050 M 2.5 mmol
  • Added mol OH- 25.00 mL 0.100 M 2.5 mmol
  • This is the first equivalence point.
  • HCO3- 2.5 mmol / 75.00 mL 0.033 M
  • HCO3- CO32- H H HCO3- H2CO3

43
(No Transcript)
44
d) 28.00 mL
  • We should recognize that that we will have HCO3-
    and CO32-, which constitutes a buffer system.
  • Initial mols HCO3- 2.5 mmol
  • Mols OH- beyond 1st eq. pt.
  • (28.00 25.00) mL 0.100 M 0.30 mmol
  • mols HCO3- 2.5 0.3 mmol 2.2 mmol
  • HCO3- 2.2 mmol / 78.00 mL 2.82e-2 M

45
  • MBE 2.5 mmol HCO3- CO32- 2.2 x
  • x 0.30 mmol
  • CO32- 0.3 / 78.00 mL 3.85e-3
  • Ka2 5.6e-11 HCO32- / HCO3-
  • H3.85e-3 / 2.82e-2
  • H 4.10e-10
  • pH 9.39

46
e) 50.00 mL 0.100 M NaOH added
  • Initial mol H2CO3 50.00 mL 0.050 M 2.5 mmol
  • Added mol OH- 50.00 mL 0.100 M 5.0 mmol
  • This is the second eq. pt.
  • Sole species CO32- 2.5 mmol / 100.00 mL
    0.025 M
  • CO32- H2O HCO3- OH-
  • 0.025 M -- 0 0
  • -x x x
  • Kb 1.00e-14 / 5.6e-11 x2 / 0.025 x
  • x 2.11e-3 pH 11.32

47
f) 53.00 mL of 0.100 M NaOH
  • We are 3.00 mL beyond the 2nd eq. pt.
  • Excess OH- 3.00 mL 0.100 M 0.300 mmol
  • OH- 0.300 mmol / 103.00 mL 2.91e-3 M
  • pH 11.464

48
Summary
  • Vol titrant pH
  • 0.00mL 3.82 excess H2CO3
  • 10.00 6.17 1st buffer region
  • 25.00 8.30
  • 28.00 9.39 2nd buffer region
  • 50.00 11.32
  • 53.00 11.464 excess OH-
  • Draw entire curve.

49
  • Read about the case of a weak base with a strong
    base in section 12-4 p232 of your text.
  • Read about how to locate the equivalence point
    with a pH electrode in section 12-5 of your text.

50
Location of end points by 1st and 2nd derivatives
51
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com