Title: Magnetic Resonance Image Formation
1Magnetic Resonance Image Formation
Daniel Bulte FMRIB Centre
2MRI System Block Diagram
X amp
Y amp
Z amp
spectrometer
magnet
r.f. coil
gradient coil
3Alignment of Spins in a Magnetic Field
M
M0
B0 field
4Energy in a Magnetic Field(Zeeman Splitting,
Spin ½)
E1/2 ??hB0/2
E-1/2 ?hB0/2
mI ½
mI ?½
P1/2 0. 5000049
P-1/2 0.4999951
1.5T, T310K, P(E)?exp(?E/kT)
5Larmor Frequency
mI ?½
mI ½
E1/2 ??hB0/2
E-1/2 ?hB0/2
Allowed transitions ?E ?hB0
h?0
?0 ?B0
6Free Induction Decay
FT
M
time
frequency
FT
time
frequency
7T1 Relaxation
Mz(t) M0 Mz(0) ? M0exp(-t/T1)
saturationrecovery
inversionrecovery
M0
M0
Mz
Mz
t
t
Mz(0) ?M0
Mz(0) 0
8T1 Weighted Imaging
white matter
æ
ö
grey matter
T
T
T
b
ç
ln
1
a
b
1
1
è
ø
T
a
1
Optimal
TR
-
Contrast
T
T
a
b
1
1
TR
Optimal TR
9T1 Weighted Image
T1/s
R1/s-1
white matter
0.7
1.43
grey matter
1
1
CSF
4
0.25
1.5T
SPGR, TR14ms, TE5ms, flip20º
10T2 Relaxation
dMxy(t) ? Mxy(t)
dt
T2
Mxy(t) Mxy(0) exp(?t/T2)
Mxy
t
11T2 Weighted Imaging
EchoAmplitude
grey
white
Contrast
TE
Optimum TE
12T2 Weighted Image
T2/ms
CSF
500
80?90
grey matter
70?80
white matter
1.5T
SE, TR4000ms, TE100ms
13Free Induction Decay
M
FT
time
frequency
FT
Note Signal only detected from Mxy component
time
frequency
141D Imaging Example
field
x
151D Imaging Example
90º pulse
field
x
161D Imaging Example
gradient on
field
x
171D Imaging Example
gradient on
field
x
181D Imaging Example
gradient on
field
x
191D Imaging Example
gradient on
field
x
201D Imaging Example
gradient on
field
x
211D Imaging Example
gradient on
field
x
221D Imaging Example
gradient on
field
x
231D Imaging Example
gradient on
field
x
241D Imaging Example
gradient on
field
x
251D Imaging Example
gradient on
field
x
261D Imaging Example
gradient on
field
x
271D Imaging Example
gradient on
field
x
281D Imaging Example
gradient on
field
x
291D Imaging Example
gradient on
field
x
301D Imaging Example
gradient on
field
x
311D Imaging Example
Signal from left-hand tube
Signal from right-hand tube
Measured signal from both tubes
321D Imaging Example
S(t)
S(?)
?
t
Fourier Transform
332D Back Projection Imaging
y
Oblique
x
34The Fourier Transform
FFT
35The Fourier Transform
FFT
Jean-Baptiste-Joseph Fourier
361D Fourier Transform
?(x) a0 b0 a1 cos(?x/xmax) a-1
cos(??x/xmax)
b1 sin(?x/xmax) b-1 sin(??x/xmax)
a2 cos(2?x/xmax) a-2 cos(?2?x/xmax)
b2 sin(2?x/xmax) b-2 sin(?2?x/xmax)
371D Fourier Transform
a0
b0
cumulative sum
a0
b0
381D Fourier Transform
a1
b1
cumulative sum
a1 cos(?x/xmax)
b1 sin(?x/xmax)
391D Fourier Transform
a2
b2
cumulative sum
a2 cos(2?x/xmax)
b2 sin(2?x/xmax)
401D Fourier Transform
a63
b63
cumulative sum
a63 cos(63?x/xmax)
b63 sin(63?x/xmax)
411D Fourier Transform
a0
a32
a63
a?32
a?63
b0
b32
b63
b?32
b?63
422D Extension
432D Extension
a?63,63
a63,63
a?63,0
a63,0
a?63,?63
a63,?63
?(x,y) ? an,m cos(n?x/xmax m?y/ymax)
? bn,m sin(n?x/xmax m?y/ymax)
442D Fourier Transform
?(x,y)
S(kx,ky)
y
ky
x
kx
?(x,y) ?? S(kx,ky) exp2?i(kxx kyy) dkxdky
S(kx,ky) ?? ?(x,y) exp?2?i(kxx kyy) dxdy
45Full k Space Coverage
ky
kx
46Only Centre of k Space
ky
kx
47Only Edges of k Space
ky
kx
48Why Use k Space?
? ?B0
Larmor equation
x0
x??1cm
x??1cm
?(x,y) ?B0 ?Gxx ?Gyy
?(x,y,t) 2? ??B0dt 2? ??Gxxdt 2? ??Gyydt
phase
?S(x,y,t) ?(x,y) expi ?(x,y,t)
elemental signal
S(t) ???(x,y) expi ?(x,y,t) dxdy
total signal
49A Few Substitutions
S(t) ???(x,y) expi ?(x,y,t) dxdy
total signal
From
kx(t) ??Gxdt
ky(t) ??Gydt
In rotating frame
S(t) ???(x,y) exp2?i(kxxkyy) dxdy
total signal
To
This is the standard Fourier Equation!
50How to Picture k Space
kx(t) ??Gxdt
ky(t) ??Gydt
1) kx and ky are measures of the x and y gradient
history
2) kxky0 following excitation of Mz into
transverse plane
51Gradient-Echo Sequence
r.f
Gx
Gy
1st phase encode step
52Gradient-Echo Sequence
r.f
Gx
Gy
2nd phase encode step
53Gradient-Echo Sequence
r.f
Gx
Gy
centre phase encode step
54Gradient-Echo Sequence
r.f
Gx
Gy
last phase encode step
55Gradient-Echo Sequence
r.f
Gx
Gy
all phase encode steps
56Gradient-Echo EPI Sequence
r.f
Gx
Gy
snap shot sequence
57Interleaved EPI
r.f
Gx
Gy
n
1st interleave
2nd interleave
etc...
58Fast Spin Echo
180?
180?
180?
90?
r.f
Gx
Gy
n
1st interleave
2nd interleave
etc...
59Fast Spin Echo
180?
180?
180?
180?
180?
180?
90?
r.f
Gx
Gy
n
1st interleave
echo train length (ETL) 6
60k Space Symmetry
cid
aib
When data are phased in to pure cosine and
sine terms
k space is hermitian conjugate symmetric
a?ib
c?id
61Phase Correcting Images
real part
real part
imaginary part
imaginary part
pre-correction
post-correction
62Partial k Space Acquisitions
measured data
missing data
cid
aib
p.e. direction
Half NEX acquisition
use centre lines to generate phase correction
a?ib
c?id
cut scan time almost in half
but SNR worse by ?2
read direction
63Fractional NEX
r.f
Gx
Gy
limited number of phase encode steps
64Partial k Space Acquisitions
measured data
missing data
cid
aib
p.e. direction
Min TE acquisition
use centre lines to generate phase correction
a?ib
c?id
cut min TE almost in half
but SNR worse by ?2
read direction
65Minimum TE
r.f
r.f
Gx
Gx
Gy
Gy
min full TE
min (partial) TE
66Field of View and Resolution
?kx 1/FOV
?kxmax
kxmax
kxmax 1/(2?x)
?kx
67Rectangular Field of View
ky
?kxmax
kxmax
kx
?kx
68Slice Selection
time
frequency
?0
G
692D Multi Slice Imaging
z1
z3
ky
z2
z4
kx
2D
Multi-Slice 2D
703D Imaging
ky
ky
kz
kx
2D
True 3D
kx
713D Imaging
r.f
ky
Gx
Gy
kz
True 3D
kx
72Thank you