HIWIRE MEETING Torino, March 910, 2006 - PowerPoint PPT Presentation

1 / 32
About This Presentation
Title:

HIWIRE MEETING Torino, March 910, 2006

Description:

HEQ integration in Loquendo platform. Recursive estimation of the ... is time-filtered with an ARMA filter that restores the autocorrelation of clean data ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 33
Provided by: cvspC
Category:
Tags: hiwire | meeting | arma | march | torino

less

Transcript and Presenter's Notes

Title: HIWIRE MEETING Torino, March 910, 2006


1
HIWIRE MEETINGTorino, March 9-10, 2006
  • José C. Segura, Javier Ramírez

2
Schedule
  • HIWIRE database evaluations
  • New results HEQ and PEQ
  • Non-linear feature normalization
  • Using temporal redundancy
  • HEQ integration in Loquendo platform
  • Recursive estimation of the equalization function
  • New improvements in robust VAD
  • Bispectrum-based VAD
  • SVM-enabled VAD

3
HIWIRE database evaluations
4
Schedule
  • HIWIRE database evaluations
  • New results HEQ and PEQ
  • Non-linear feature normalization
  • Using temporal redundancy
  • HEQ integration in Loquendo platform
  • Recursive estimation of the equalization function
  • New improvements in robust VAD
  • Bispectrum-based VAD
  • SVM-enabled VAD

5
Temporal redundancy in HEQ
  • Enhance the normalization adding a linear
    transformation to restore temporal correlations
  • Each equalized cepstral coefficient is
    time-filtered with an ARMA filter that restores
    the autocorrelation of clean data

6
HEQ integration in Loquendo platform
7
HEQ integration (recursive estimation) (1)
  • Actual approach Gaussian HEQ using ECDF
  • Using quantiles

8
HEQ integration (recursive estimation) (2)
  • Equalization by linear interpolation

Averaged over training data
From actual utterance
  • Mapping correspondingquantiles

9
HEQ integration (recursive estimation) (3)
10
HEQ integration (recursive estimation) (4)
  • Utterances are equalized WITHOUT delay
  • Quantiles are updated AFTER the equalization

11
HIWIRE MEETINGTorino, March 9-10, 2006
  • José C. Segura, Javier Ramírez

12
Schedule
  • HIWIRE database evaluations
  • New results HEQ and PEQ
  • Non-linear feature normalization
  • Using temporal redundancy
  • HEQ integration in Loquendo platform
  • Recursive estimation of the equalization function
  • New improvements in robust VAD
  • Bispectrum-based VAD
  • SVM-enabled VAD

13
Bispectrum-based VAD (1)
  • Motivations
  • Ability of HOS methods to detect signals in noise
  • Knowledge of the input processes (Gaussian)
  • Issues to be addressed
  • Computationally expensive
  • Variance of bispectrum estimators much higher
    than that of power spectral estimators (identical
    data record size)
  • Solution Integrated bispectrum
  • J. K. Tugnait, Detection of non-Gaussian signals
    using integrated polyspectrum, IEEE Trans. on
    Signal Processing, vol. 42, no. 11, pp.
    31373149, 1994.

14
Bispectrum-based VAD (2)
  • Definitions
  • Let x(t) be a discrete-time signal
  • Bispectrum
  • Third order cumulants
  • Inverse transform

15
Bispectrum-based VAD (3)
Noise only
Noise speech
16
Bispectrum-based VAD (4)
  • Integrated bispectrum (IBI)
  • Cross-spectrum Syx(?)
  • Bispectrum
  • Inverse
  • transform
  • Bispectrum Cross spectrum

i 0
17
Bispectrum-based VAD (5)
  • Integrated bispectrum (IBI)
  • Defined as a cross spectrum between the signal
    and its square, and therefore, it is a function
    of a single frequency variable
  • Benefits
  • Less computational cost
  • computed as a cross spectrum
  • Variance of the same order of the power spectrum
    estimator
  • Properties
  • For Gaussian processes
  • Bispectrum is zero
  • Integrated bispectrum is zero as well

18
Bispectrum-based VAD (6)
  • Two alternatives explored for formulating the
    decision rule
  • Estimation by block averaging (BA)
  • MO-LRT
  • Given a set of N 2m1 consecutive observations

19
Bispectrum-based VAD (7)
  • LRT evaluation
  • IBI Gaussian Model
  • Variances
  • Defined in terms of
  • Sss (clean speech power spectrum)
  • Snn (noise power spectrum)

20
Bispectrum-based VAD (8)
  • Denoising

2nd WF stage
1st WF stage
2nd WF design
Smoothed spectral subtraction
1st WF design
1-frame delay
21
Bispectrum VAD Analysis (1)
  • MO-LRT VAD

22
Bispectrum-based VAD results (2)
23
Bispectrum-based VAD results (3)
24
Bispectrum-based VAD results (4)
WF Wiener filtering FD Frame-dropping
25
SVM-enabled VAD (1)
  • Motivation
  • Ability of SVMs for learning from experimental
    data
  • SVMs enable defining a function
  • using training data
  • Classify unseen examples (x, y)
  • Statistical learning theory restricts the class
    of functions the learning machine can implement.

26
SVM-enabled VAD (2)
  • Hyperplane classifiers
  • Training w and b define maximal margin
    hyperplane
  • Kernels

27
SVM-enabled VAD (3)
28
SVM-enabled VAD (4)
  • Feature
  • extraction
  • Training

29
SVM-enabled VAD (5)
  • Feature
  • extraction
  • Decision function
  • 2-band features

30
SVM-enabled VAD (6)
  • Analysis
  • 4 subbands
  • Noise reduction
  • Improvements
  • Contextual speech features
  • Better results without noise reduction

31
Dissemination (VAD)
  • Integrated bispectrum
  • J.M. Górriz, J. Ramírez, C. G. Puntonet, J.C.
    Segura, Generalized-LRT based voice activity
    detector, IEEE Signal Processing Letters, 2006.
  • J. Ramírez , J.M. Górriz, J. C. Segura, C. G.
    Puntonet, A. Rubio, Speech/Non-speech
    Discrimination based on Contextual Information
    Integrated Bispectrum LRT, IEEE Signal
    Processing Letters, 2006.
  • J.M. Górriz, J. Ramírez, J. C. Segura, C. G.
    Puntonet, L. García, Effective Speech/Pause
    Discrimination Using an Integrated Bispectrum
    Likelihood Ratio Test , ICASSP 2006.
  • SVM VAD
  • J. Ramírez, P. Yélamos, J.M. Górriz, J.C. Segura.
    SVM-based Speech Endpoint Detection Using
    Contextual Speech Features, IEE Electronics
    Letters 2006.
  • J. Ramírez, P. Yélamos, J.M. Górriz, C.G.
    Puntonet, J.C. Segura. SVM-enabled Voice
    Activity Detection, ISNN 2006.
  • P. Yélamos, J. Ramírez, J.M. Górriz, C.G.
    Puntonet, J.C. Segura, Speech Event Detection
    Using Support Vector Machines, ICCS 2006.

32
HIWIRE MEETINGAthens, November 3-4, 2005
  • José C. Segura, Javier Ramírez
Write a Comment
User Comments (0)
About PowerShow.com