Arithmetic Operations on Intervals - PowerPoint PPT Presentation

1 / 43
About This Presentation
Title:

Arithmetic Operations on Intervals

Description:

Hamming distance. FS1 = RandomFuzzySet[{0, 15}, Type - Complete] ... Hamming distance ranking method. Determine MAX(A, B), Calculate d(MAX(A, B), A) ... – PowerPoint PPT presentation

Number of Views:381
Avg rating:3.0/5.0
Slides: 44
Provided by: tri5154
Category:

less

Transcript and Presenter's Notes

Title: Arithmetic Operations on Intervals


1
Arithmetic Operations on Intervals
  • a, b ? d, e
  • f ? g a f b, d g e
  • ? any of the four arithmetic operations on closed
    intervals

2
  • The result of an arithmetic operation on closed
    intervals is again a closed interval.

3
Addition
  • a, b d, e a d, b e
  • 2, 5 1, 3 3, 8
  • 0, 1 -6, 5 -6, 6

4
Subtraction -
  • a, b - d, e a - e, b - d
  • 2, 5 - -1, 4 -2, 6
  • 3, 7 - 3, 7 -4, 4

5
Multiplication
  • a, b d, e min(ad, ae, bd, be), max(ad,
    ae, bd, be)
  • -1, -1 -2, -0.5 -2, 2
  • 3, 4 2, 2 6, 8

6
Division /
  • a, b / d, e min(a/d, a/e, b/d, b/e),
    max(a/d, a/e, b/d, b/e)
  • -1, -1 / -2, -0.5 -2, 2
  • 4, 10 / 1, 2 2, 10

7
Properties
  • For
  • Aa1, a2, Bb1, b2, Cc1, c2,
  • 0 0,0, 11,1

8
  • 1. A B B A (commutativity)
  • A B B A
  • 2. (A B) C A (B C) (associativity)
  • (A B) C A (B C)
  • 3. A 0 A A 0 (identity)
  • A 1 A A 1

9
  • 4. A (B C) ? A B A C
    (subdistributivity)
  • 5. If
  • b c 0 for every b ? B and c ? C,
  • then
  • A (B C) A B A C
    (distributivity)
  • If A a, a,
  • then
  • a (B C) a B a C

10
  • 6. 0 ? A - A and 1 ? A/A

11
  • 7. If
  • A ? E and B ? F,
  • then
  • A B ? E F
  • A - B ? E - F
  • A B ? E F
  • A / B ? E / F (inclusion monotonicity)

12
Hamming distance
13
Hamming distance
  • d (A, B) ? (A(x) - B(x) for ? x ? X

14
Hamming distance
  • FS1 RandomFuzzySet0, 15, Type -gt Complete
  • FS2 RandomFuzzySet0, 15, Type -gt Complete

In2HammingDistanceFS1,FS2 Out2
4.94825
15
Fuzzy ranking methods example.
  • Let A and B be fuzzy numbers whose
    triangular-type membership functions are given
    below. Illustrate three ranking methods.

A B
16
Hamming distance ranking method.
  • Determine MAX(A, B),
  • Calculate d(MAX(A, B), A),
  • Calculate d(MAX(A, B), B),
  • IF d(MAX(A, B), A) ? d(MAX(A, B), B)
  • Then A ? B.

17
Hamming distance ranking.
HammingDistanceMAXA, B, A 4/3
HammingDistanceMAXA, B, B 1/3 A B
18
MIN and MAX Operations
19
Fuzzy number
  • - a fuzzy set must be a normal
  • - ?-cut must be a closed interval for every
  • ? ? (0,1
  • - the support of a fuzzy set must be bounded.

20
Fuzzy numbers
21
Triangular Membership Function
C 11
S 8
22
Trapezoidal fuzzy numbers and its degenerated
cases
23
Comparable fuzzy numbers.
24
Lattice of real numbers R
  • R, min, max


25
Lattice of real numbers R
min(x,y) x if x y y if y
x max(x,y) y if x y x if y
x, for every pair x,y ? R
26
Lattice of real numbers R
  • The linear ordering of real numbers does not
    extend to fuzzy numbers.

27
Lattice of fuzzy numbers ?
  • ?, MIN, MAX


28
Lattice of fuzzy numbers ?
  • MIN(A,B) MIN (A, B)(z) max min A (x), B
    (y),
  • for z min (x, y) and for all z ? R
  • MAX(A,B) MAX (A, B)(z) max min A (x), B
    (y),
  • for z max (x, y) and for all z ? R


29
ShowGraphicsArrayAB, MIN
The two fuzzy numbers, A and B are not
comparable.
30
ShowGraphicsArrayAB, MAX
The two fuzzy numbers, A and B are not
comparable.
31
ShowGraphicsArrayAB, Min1
32
ShowGraphicsArrayAB, Max1
33
Properties of MIN and MAX
  • Let MIN and MAX be binary operations on all fuzzy
    numbers ?,
  • ?x??? and for every A,B,C ? ?
  • the following properties hold

34
1.Properties of MIN and MAX
  • Commutativity
  • MIN(A,B) MIN(B,A)
  • MAX(A,B) MAX(B,A)

35
2.Properties of MIN and MAX
  • Associativity
  • MINMIN(A,B),C MINA,MIN(B,C)
  • MAXMAX(A,B),C MAXA,MAX(B,C)

36
3.Properties of MIN and MAX
  • Idempotence
  • MIN(A,A) A
  • MAX(A,A) A

37
4.Properties of MIN and MAX
  • Absorption
  • MINA,MAX(A,B) A
  • MAXA,MIN(A,B) A

38
5.Properties of MIN and MAX
  • Distributivity
  • MINA,MAX(B,C) MAXMIN(A,B), MIN(A,C)
  • MAXA,MIN(B,C) MINMAX(A,B), MAX(A,C)

39
Lattice of fuzzy numbers ?
  • MIN(A, B) MIN (A, B)(z) max min A (x), B
    (y),
  • for z min (x, y) and for all z ? R
  • MAX(A,B) MAX (A, B)(z) max min A (x), B
    (y),
  • for z max (x, y) and for all z ? R


40
Gaussian fuzzy numbers
FuzzyPlot NEG, ZERO, POS
41
Gaussian fuzzy numbers
FuzzyPlot NEG, POS
42
MINA,B
A B
MINA,B
The two fuzzy numbers, A and B are not
comparable.
43
Fuzzy Arithmetic
A1, A2, A1A2
A1, A2, A1-A2
Write a Comment
User Comments (0)
About PowerShow.com