Title: Arithmetic Operations on Intervals
1Arithmetic Operations on Intervals
- a, b ? d, e
- f ? g a f b, d g e
- ? any of the four arithmetic operations on closed
intervals
2- The result of an arithmetic operation on closed
intervals is again a closed interval.
3Addition
- a, b d, e a d, b e
- 2, 5 1, 3 3, 8
- 0, 1 -6, 5 -6, 6
4Subtraction -
- a, b - d, e a - e, b - d
- 2, 5 - -1, 4 -2, 6
- 3, 7 - 3, 7 -4, 4
5Multiplication
- a, b d, e min(ad, ae, bd, be), max(ad,
ae, bd, be) - -1, -1 -2, -0.5 -2, 2
- 3, 4 2, 2 6, 8
6Division /
- a, b / d, e min(a/d, a/e, b/d, b/e),
max(a/d, a/e, b/d, b/e) - -1, -1 / -2, -0.5 -2, 2
- 4, 10 / 1, 2 2, 10
7Properties
- For
- Aa1, a2, Bb1, b2, Cc1, c2,
- 0 0,0, 11,1
8- 1. A B B A (commutativity)
- A B B A
- 2. (A B) C A (B C) (associativity)
- (A B) C A (B C)
- 3. A 0 A A 0 (identity)
- A 1 A A 1
9- 4. A (B C) ? A B A C
(subdistributivity) - 5. If
- b c 0 for every b ? B and c ? C,
- then
- A (B C) A B A C
(distributivity) - If A a, a,
- then
- a (B C) a B a C
10 11- 7. If
- A ? E and B ? F,
- then
- A B ? E F
- A - B ? E - F
- A B ? E F
- A / B ? E / F (inclusion monotonicity)
12Hamming distance
13Hamming distance
-
- d (A, B) ? (A(x) - B(x) for ? x ? X
-
14Hamming distance
- FS1 RandomFuzzySet0, 15, Type -gt Complete
- FS2 RandomFuzzySet0, 15, Type -gt Complete
In2HammingDistanceFS1,FS2 Out2
4.94825
15Fuzzy ranking methods example.
- Let A and B be fuzzy numbers whose
triangular-type membership functions are given
below. Illustrate three ranking methods.
A B
16Hamming distance ranking method.
- Determine MAX(A, B),
- Calculate d(MAX(A, B), A),
- Calculate d(MAX(A, B), B),
- IF d(MAX(A, B), A) ? d(MAX(A, B), B)
- Then A ? B.
17 Hamming distance ranking.
HammingDistanceMAXA, B, A 4/3
HammingDistanceMAXA, B, B 1/3 A B
18MIN and MAX Operations
19Fuzzy number
- - a fuzzy set must be a normal
- - ?-cut must be a closed interval for every
- ? ? (0,1
- - the support of a fuzzy set must be bounded.
20Fuzzy numbers
21Triangular Membership Function
C 11
S 8
22Trapezoidal fuzzy numbers and its degenerated
cases
23Comparable fuzzy numbers.
24Lattice of real numbers R
25Lattice of real numbers R
min(x,y) x if x y y if y
x max(x,y) y if x y x if y
x, for every pair x,y ? R
26Lattice of real numbers R
- The linear ordering of real numbers does not
extend to fuzzy numbers.
27Lattice of fuzzy numbers ?
28Lattice of fuzzy numbers ?
- MIN(A,B) MIN (A, B)(z) max min A (x), B
(y), - for z min (x, y) and for all z ? R
- MAX(A,B) MAX (A, B)(z) max min A (x), B
(y), - for z max (x, y) and for all z ? R
29ShowGraphicsArrayAB, MIN
The two fuzzy numbers, A and B are not
comparable.
30ShowGraphicsArrayAB, MAX
The two fuzzy numbers, A and B are not
comparable.
31ShowGraphicsArrayAB, Min1
32ShowGraphicsArrayAB, Max1
33Properties of MIN and MAX
- Let MIN and MAX be binary operations on all fuzzy
numbers ?, - ?x??? and for every A,B,C ? ?
- the following properties hold
341.Properties of MIN and MAX
- Commutativity
- MIN(A,B) MIN(B,A)
- MAX(A,B) MAX(B,A)
-
352.Properties of MIN and MAX
-
- Associativity
- MINMIN(A,B),C MINA,MIN(B,C)
- MAXMAX(A,B),C MAXA,MAX(B,C)
363.Properties of MIN and MAX
- Idempotence
- MIN(A,A) A
- MAX(A,A) A
-
374.Properties of MIN and MAX
- Absorption
- MINA,MAX(A,B) A
- MAXA,MIN(A,B) A
385.Properties of MIN and MAX
- Distributivity
- MINA,MAX(B,C) MAXMIN(A,B), MIN(A,C)
- MAXA,MIN(B,C) MINMAX(A,B), MAX(A,C)
39Lattice of fuzzy numbers ?
- MIN(A, B) MIN (A, B)(z) max min A (x), B
(y), - for z min (x, y) and for all z ? R
- MAX(A,B) MAX (A, B)(z) max min A (x), B
(y), - for z max (x, y) and for all z ? R
40Gaussian fuzzy numbers
FuzzyPlot NEG, ZERO, POS
41Gaussian fuzzy numbers
FuzzyPlot NEG, POS
42MINA,B
A B
MINA,B
The two fuzzy numbers, A and B are not
comparable.
43Fuzzy Arithmetic
A1, A2, A1A2
A1, A2, A1-A2