Title: ECE602 BME I
1- ECE602 BME I
- Ordinary Differential Equations in Biomedical
Engineering
2- Classification of ODEs
- Canonical Form of ODE
- Linear ODEs
- Nonlinear ODEs
- Steady-State Solutions and Stability Analysis
- BME Example 1- The dynamics of Drug Absorption
- BME example 2 Hodgkin-Huxley Model for Dynamics
of Nerve Cell Potentials
3Classification of ODEs
- The order of an ODE the order of the highest
derivative - R(t)0 Homogeneous R(t)?0 Nonhomogeneous
- Nonlinear an ODE contains powers of the
dependent variable, powers of the derivatives,
or products of the dependent variable with the
derivatives
4Classification of ODEs
First-order, linear, homogeneous
First-order, linear, nonhomogeneous
First-order, nonlinear, nonhomogeneous
Second-order, linear, nonhomogeneous
Second-order, nonlinear, nonhomogeneous
Third-order, nonlinear, nonhomogeneous
5Canonical Form of ODEs
- Canonical form
- A set of n simultaneous first-order ODEs
- Required for methods for integrating ODEs
Vector format
6Canonical Form of ODEs
Transformation to Canonical form
7Linear ODEs
Matrix Exponential Method
8Linear ODEs
EXPM Matrix exponential. EXPM(A) is the
matrix exponential of A.
gtgt syms t gtgt gtgt A1 1-1 1 y011 gtgt
yexpm(At)y0 y exp(t)cos(t)exp(t)sin(t)
-exp(t)sin(t)exp(t)cos(t)
9Linear ODEs
Eigenvector matrix
Eigenvalue matrix
Method using eigenvalues and eigenvectors
10Linear ODEs
EIG Eigenvalues and eigenvectors. X,D
EIG(A) produces a diagonal matrix D of
eigenvalues and a full matrix X whose columns
are the corresponding eigenvectors so that
AX XD.
gtgt syms t gtgt A1 1-1 1 y011 gtgt
X,Deig(A) gtgt y(Xexpm(Dt)inv(X))y0 y
exp(t)cos(t)-1/2i(exp(t)cos(t)iexp(t)sin(
t))1/2i(exp(t)cos(t)-iexp(t)sin(t))
1/2i(exp(t)cos(t)iexp(t)sin(t))-1/2i(exp(t
)cos(t)-iexp(t)sin(t))exp(t)cos(t) gtgt
ysimplify(y) y exp(t)(cos(t)sin(t))
exp(t)(-sin(t)cos(t))