Title: 5'2 FiniteVolume Method
15.2 Finite-Volume Method
- Closely related to Subdomain Method
- But without explicit introduction of trial or
interpolation function - Approximate the flux terms directly (rather than
the function itself) - Use the integral form of PDEs (instead of
weighted residuals) - Numerical Heat Transfer and Fluid Flows, S.V.
Patankar, McGraw-Hill, 1980.
2Navier-Stokes Equations
- 2D Compressible N-S equations
- General Form
3Greens Theorem
- 3D Volume integral ltgt Surface integral
- 2D Surface integral ltgt Line integral
4(No Transcript)
5Triangular elements 5-sided or 6-sided control
volumes
65.2.1 First Derivatives
NE
N
C
n
NW
E
D
e
P
w
W
B
s
SE
A
S
SW
7First Derivatives
- Evaluate surface integrals for arbitrary control
surfaces
8First Derivatives
? dy
? dx
C
dx
dy
D
? dy
? dx
B
A
dx
B
dy
A
9First Derivatives
dx
dy
10Finite-Volume Method
11Linear Interpolation
12Uniform Cartesian Grids
vn
C
D
ue
uw
A
B
vs
or
13General Curvilinear Coordinates
- For curvilinear grids, FVM provides a
discretization in Cartesian coordinates without
explicit (body-fitted) coordinate transformation - Grid curvature terms are ignored
- Alternatively, one may apply FVM in transformed
plane
145.2.2. Second Derivatives
- Convective Transport Equations
15Convective Transport Equations
Line integral for element centered at P
16Second Derivatives
NE
Line integral for element centered at s
N
C
n
NW
E
D
e
P
w
B
W
s
A
SE
B?
S
A?
SW
17Second Derivatives
- -- First derivatives centered
at s - -- came from second derivatives centered at
P - Use Greens theorem again for elements centered
at s, e, n, and w (not centered at P)
18NE
Line integral for element centered at s
N
C
n
NW
E
D
e
P
w
B
W
s
A
SE
B?
S
A?
SW
19Bilinear Interpolation
- Ignore grid expansion or contraction
- Bilinear interpolation
20Flux Evaluation
Diffusive and convective fluxes
21Convective Transport Equation
Line integral for elements centered at s, e, n,
w four overlapped surface (line) integrals
NE
N
n
NW
E
e
P
w
W
s
SE
B
S
A
SW
22Convective Transport Equations
23Convective Transport Equations
24Uniform Cartesian Grid
25Central Difference
Identical to the finite-volume method
Unphysical solutions may occur if cell Reynolds
numbers gt 2
26Exponential Scheme
- Ref Numerical Heat Transfer and Fluid Flow, by
S.V. Patankar, 1980
Steady, 1-D
Fw
Fe
P
W
E
27Exponential Scheme
Gradual shift to upwind
28Exponential Scheme
Gn
?xn
Fe
Fw
?ye
?yw
?xs
Gs
29Exponential Scheme
- Nonuniform Cartesian grids
- Uniform Cartesian grid (and ue uw u, vn vs
v)
301D Convective Transport Equation
- Uniform Cartesian grid (and ue uw u)
- Pe Pw Px u?x/a
- Exponential Scheme
- Linear FVM (Central Difference)
31FVM Pure Diffusion
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
Linear
Exponential
32FVM Convection-Diffusion
0.25
0.249896
0.2625
0.2375
0.264473
0.237609
0.25
0.249896
Linear
Exponential
33FVM Convection-Diffusion
0.25
0.240156
0.375
0.125
0.379922
0.139765
0.25
0.240156
Linear
Exponential
34FVM Convection-Dominant
0.25
0.083327
1.5
-1.0
0.833308
0.000038
0.25
0.083327
Linear
Exponential
35FVM Convection-Dominant
0.25
0.000000
12.75
-12.25
1.000000
0.000000
0.25
0.000000
Linear
Exponential
36FVM Skewed Upwind
0.2375
0.237510
0.2625
0.2375
0.262490
0.237510
0.2625
0.262490
Linear
Exponential
37FVM Skewed Upwind
0.125
0.134471
0.375
0.125
0.365529
0.134471
0.375
0.365529
Linear
Exponential
38Finite-Volume Method
-1.0
0.000023
1.5
-1.0
0.499977
0.000023
1.5
0.499977
Linear
Exponential
39FVM Convection-Dominant
-12.25
0.000000
12.75
-12.25
0.500000
0.000000
12.75
0.500000
Linear
Exponential
40(No Transcript)
41(No Transcript)
42AJM
Error in textbook
43(No Transcript)
44(No Transcript)
45Successive Overrelaxation (SOR)
46(No Transcript)
47(No Transcript)
48Grid Refinement