5'2 FiniteVolume Method - PowerPoint PPT Presentation

1 / 48
About This Presentation
Title:

5'2 FiniteVolume Method

Description:

5'2 FiniteVolume Method – PowerPoint PPT presentation

Number of Views:173
Avg rating:3.0/5.0
Slides: 49
Provided by: Mechanical77
Category:

less

Transcript and Presenter's Notes

Title: 5'2 FiniteVolume Method


1
5.2 Finite-Volume Method
  • Closely related to Subdomain Method
  • But without explicit introduction of trial or
    interpolation function
  • Approximate the flux terms directly (rather than
    the function itself)
  • Use the integral form of PDEs (instead of
    weighted residuals)
  • Numerical Heat Transfer and Fluid Flows, S.V.
    Patankar, McGraw-Hill, 1980.

2
Navier-Stokes Equations
  • 2D Compressible N-S equations
  • General Form

3
Greens Theorem
  • 3D Volume integral ltgt Surface integral
  • 2D Surface integral ltgt Line integral

4
(No Transcript)
5
Triangular elements 5-sided or 6-sided control
volumes
6
5.2.1 First Derivatives
NE
N
C
n
NW
E
D
e
P
w
W
B
s
SE
A
S
SW
7
First Derivatives
  • Evaluate surface integrals for arbitrary control
    surfaces

8
First Derivatives
? dy
? dx
C
dx
dy
D
? dy
? dx
B
A
dx
B
dy
A
9
First Derivatives
dx
dy
10
Finite-Volume Method
11
Linear Interpolation
12
Uniform Cartesian Grids
vn
C
D
ue
uw
A
B
vs
or
13
General Curvilinear Coordinates
  • For curvilinear grids, FVM provides a
    discretization in Cartesian coordinates without
    explicit (body-fitted) coordinate transformation
  • Grid curvature terms are ignored
  • Alternatively, one may apply FVM in transformed
    plane

14
5.2.2. Second Derivatives
  • Convective Transport Equations

15
Convective Transport Equations
Line integral for element centered at P
16
Second Derivatives
NE
Line integral for element centered at s
N
C
n
NW
E
D
e
P
w
B
W
s
A
SE
B?
S
A?
SW
17
Second Derivatives
  • -- First derivatives centered
    at s
  • -- came from second derivatives centered at
    P
  • Use Greens theorem again for elements centered
    at s, e, n, and w (not centered at P)

18
NE
Line integral for element centered at s
N
C
n
NW
E
D
e
P
w
B
W
s
A
SE
B?
S
A?
SW
19
Bilinear Interpolation
  • Ignore grid expansion or contraction
  • Bilinear interpolation

20
Flux Evaluation
Diffusive and convective fluxes
21
Convective Transport Equation
Line integral for elements centered at s, e, n,
w four overlapped surface (line) integrals
NE
N
n
NW
E
e
P
w
W
s
SE
B
S
A
SW
22
Convective Transport Equations
23
Convective Transport Equations
24
Uniform Cartesian Grid
25
Central Difference
Identical to the finite-volume method
Unphysical solutions may occur if cell Reynolds
numbers gt 2
26
Exponential Scheme
  • Ref Numerical Heat Transfer and Fluid Flow, by
    S.V. Patankar, 1980

Steady, 1-D
Fw
Fe
P
W
E
27
Exponential Scheme
  • Cell Peclet number Pe

Gradual shift to upwind
28
Exponential Scheme
  • Cartesian grids only

Gn
?xn
Fe
Fw
?ye
?yw
?xs
Gs
29
Exponential Scheme
  • Nonuniform Cartesian grids
  • Uniform Cartesian grid (and ue uw u, vn vs
    v)

30
1D Convective Transport Equation
  • Uniform Cartesian grid (and ue uw u)
  • Pe Pw Px u?x/a
  • Exponential Scheme
  • Linear FVM (Central Difference)

31
FVM Pure Diffusion
  • Uniform Cartesian Grid

0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
Linear
Exponential
32
FVM Convection-Diffusion
  • Uniform Cartesian Grid

0.25
0.249896
0.2625
0.2375
0.264473
0.237609
0.25
0.249896
Linear
Exponential
33
FVM Convection-Diffusion
  • Uniform Cartesian Grid

0.25
0.240156
0.375
0.125
0.379922
0.139765
0.25
0.240156
Linear
Exponential
34
FVM Convection-Dominant
  • Uniform Cartesian Grid

0.25
0.083327
1.5
-1.0
0.833308
0.000038
0.25
0.083327
Linear
Exponential
35
FVM Convection-Dominant
  • Uniform Cartesian Grid

0.25
0.000000
12.75
-12.25
1.000000
0.000000
0.25
0.000000
Linear
Exponential
36
FVM Skewed Upwind
  • Uniform Cartesian Grid

0.2375
0.237510
0.2625
0.2375
0.262490
0.237510
0.2625
0.262490
Linear
Exponential
37
FVM Skewed Upwind
  • Uniform Cartesian Grid

0.125
0.134471
0.375
0.125
0.365529
0.134471
0.375
0.365529
Linear
Exponential
38
Finite-Volume Method
  • Uniform Cartesian Grid

-1.0
0.000023
1.5
-1.0
0.499977
0.000023
1.5
0.499977
Linear
Exponential
39
FVM Convection-Dominant
  • Uniform Cartesian Grid

-12.25
0.000000
12.75
-12.25
0.500000
0.000000
12.75
0.500000
Linear
Exponential
40
(No Transcript)
41
(No Transcript)
42
AJM
Error in textbook
43
(No Transcript)
44
(No Transcript)
45
Successive Overrelaxation (SOR)
46
(No Transcript)
47
(No Transcript)
48
Grid Refinement
Write a Comment
User Comments (0)
About PowerShow.com