Hyper Hyper - PowerPoint PPT Presentation

About This Presentation
Title:

Hyper Hyper

Description:

bipartite graphs (strict partial) - OP. IP - OP. Good ... Bipartite Graphs. Idea. Every Hypergraph HG can be represented as a Graph. HG = (V, E) G = (V E, E ... – PowerPoint PPT presentation

Number of Views:89
Avg rating:3.0/5.0
Slides: 19
Provided by: ml148
Category:
Tags: bipartite | hyper

less

Transcript and Presenter's Notes

Title: Hyper Hyper


1
Hyper Hyper
  • Mining Frequent Hypergraphs
  • 07.03.2005Tamas Horvath, Björn Bringmann,His
    Royal Highness Professor Doctor Luc De Raedt

2
A Hypergraph(or set system)
A
  • HG (V, E, S, ?)
  • Set V of Nodes v
  • Set E of Edges eEach edge e is a subset of
    V(i.e. E ? 2V )

B
D
E
C
3
Subhypergraphs
  • H (V, E, S, ?) and H (V, E, S, ?)with V
    Í V anda mapping ? E ? E such that e ?(e)


Í
injective
partial
strict
subhypergraph
A
A
B
D
E
B
D
E
C
C
F
4
Living on the EDGE
  • ? Edges in proper subhypergraphs
  • ? Edges in partial subhypergraphs

e1 e2
A
B
C
A
B
C
e1 ? e2
A
B
A
B
C
5
4 Reductions
itemset mining
itemset mining
IP
Good news
- OP
bipartite graphs
bipartite graphs (strict partial)
- OP
3 uniform ß-acyclic Hypergraphsdeciding if H is
Freq is NP-Hard
6
Itemset Mining (proper)
  • Transaction Hypergraph
  • Items Hyperedges (set of vertice)
  • ? A set of Hypergraphs is a Database

A
  • A,B,C, B,D,E

B
D
E
C
can be enumerated in incremental polynomial time
7
Itemset Mining (partial)
  • Transaction Hypergraph
  • Items Powersets of Hyperedges
  • ? A set of Hypergraphs is a Database

A
  • A,B,C, B,D,E

A,B, A,C, B,C,, B,D, B,E, D,E,
B
D
E
A, B, C, D, E
C
IP for bounded rank
8
Bipartite Graphs
  • Idea Every Hypergraph HG can be represented as
    a Graph
  • HG (V, E) ? G (V ? E, E)E ? (v, e) v
    ? e, e ? E, v ? V

9
How our Hypergraph transforms
U
R
M
e
M
S
U
R
F
S
M
R
e
F
e
U
e
  • Nodes stay nodes
  • Edges become nodes
  • Each node is connected with its edges

S
F
10
Bi Partite
proper
partial
S
e
M
MSU
M
U
U
R
F
e
R
FRU
S
F
Cant be enumerated in output polynomial time
11
Mining Hypergraphs
Hypergraphs
injective
  • gSpan
  • closeGraph
  • AGM

Use anyItemsetminer
Use anyGraphminer
Frequent Hypergraphs
12
Mining the Hype
  • Mining KDD Bibliographies
  • Reference lists modeled as hypergraphs
  • R. Agrawal, H. Mannila, R. Srikant, H. Toivonen
  • H. Mannila, H. Toivonen
  • R. Agrawal, L. De Raedt
  • L. De Raedt, T. Horvath

, B. Bringmann
Argawal
Mannila
Srikant
Toivonen
De Raedt
Horvath
13
Citation Datasets
14
Speed
15
Search and Find
16
Conclusions
  • Using reductions to mine Hypergraphs
  • Positive and negative complexity results
  • Experiments show that it is useful
  • If you write a KDD Paper,cite Agrawal and Srikant

( or break the tradition )
17
?
Questions
ideas
comments
valuable insights
coffee ?
18
Thanks!
Write a Comment
User Comments (0)
About PowerShow.com