Title: Knowing Nernst: Nonequilibrium copper redox chemistry
1Knowing NernstNon-equilibrium copper redox
chemistry
2Knowing NernstNon-equilibrium copper redox
chemistry
- Objectives
- Calculate/measure stability of copper complexes
- Use ligands to change stabilities of metal species
HSAB concept qualitative insights Redox
potentials/Nernst eqn quantitative insights
3Chemical species studies
- CuCl2
- CuI
- Cu(NH3)42
- Cu(en)22
- Cu(salen)n
- Charge vs oxidation state
4Oxidation states
- Sum of oxidation states ionic charge on species
- Assumes unequal sharing of electrons
- more electronegative atom gets all of bond
electrons
5Oxidation states
- Sum of oxidation states ionic charge on species
- Assumes unequal sharing of electrons
- more electronegative atom gets all of bond
electrons
- Examples
- MnO, MnO2, KMnO4
- What differences are found between compounds with
difference oxidation numbers?
Atomic radius Reactivity (redox potential)
6Disproportionation
- 2 Fe4 ? Fe3 Fe5
- 2 H2O2 ? 2 H2O O2
- 2 Cu ? Cu0 Cu2
- Reverse of process comproportionation
7Sample redox potential calculation
- CuCl2 ammonia -gt Cu(NH3)42 chloride
- (1) Cu2 I e ? CuI 0.86V
- (2) Cu2 Cl e ? CuCl 0.54V
- (3) I2 2e ? 2I 0.54V
- (4) Cu (aq) e ? Cu(s) 0.52V
- (5) Cu2(aq) 2e ? Cu(s) 0.37V
- (6) CuCl e ? Cu(s) Cl 0.14V
- (7) Cu(NH3)42 2e ? Cu(s) 4NH3 -0.12V
- (8) Cu2(aq) e ? Cu (aq) -0.15V
- (9) CuI e ? Cu(s) I -0.19V
- (10) Cu(en)22 2e ? Cu 2en -0.50V
8- Reduction Cu2(aq) 2e ? Cu(s) E0
0.37V (5) - Oxidation Cu(s) 4NH3 ? Cu(NH3)42
2e E0 0.12V (7) - Net Cu2(aq) 4NH3 ? Cu(NH3)42 E0
0.49V
- DG0 -nFE0
- n mol e-
- F 96,500 C / mol e-
- E0 standard reduction potential in V (1M conc,
1 atm pressure) - 1 Joule (1 Volt)(1 Coulomb)
9Nernst Equation
at 298 K
n number of mol e- R 8.3145 J/K-mol F
96,500 C / mol e- E0 standard reduction
potential in V (1M conc, 1 atm pressure)
10Hard vs. soft
- Describes the general bonding trends of chemical
species (Lewis acids / Lewis bases) - Hard acids prefer to bind to hard bases, while
soft acids prefer to bind to soft bases
11(No Transcript)
12most stable complexes
Kstability AB / AB
least stable complexes
softer
harder
13Hard low polarizability, primarily ionic bonding
Soft high polarizability, primarily covalent
bonding
14Lewis acids and bases
- Hard acids
- H, Li, Na, K , Rb, Cs Be2, Mg2, Ca2 ,
Sr2, Ba2 BF3, Al 3, Si 4, BCl3 , AlCl3
Ti4, Cr3, Cr2, Mn2 Sc3, La3, Ce4, Gd3,
Lu3, Th4, U4, Ti4, Zr4, Hf4, VO4, Cr6,
Si4, Sn4
- Borderline acids
- Fe2, Co2, Ni2 , Cu2, Zn2 Rh3, Ir3, Ru3,
Os2 R3C , Sn2, Pb2 NO, Sb3, Bi3 SO2
- Soft acids
- Tl, Cu, Ag, Au, Cd2 Hg2, Pd2, Pt2, M0,
RHg, Hg22 BH3 CH2 HO, RO
-
- Borderline bases
- Br- NO2-, N3- SO32- C6H5NH2, pyridine N2
- Soft bases
- H-, I- H2S, HS-, S2- , RSH, RS-, R2S SCN-
(bound through S), CN-, RNC, CO R3P, C2H4, C6H6
(RO)3P
- Hard bases
- F-, Cl- H2O, OH-, O2- CH3COO- , ROH, RO-, R2O
NO3-, ClO4- CO32-, SO42- , PO43- NH3, RNH2
N2H4
15(No Transcript)
16Experimental Details
--Part G watch out for oil drips and ethanol
flames
--do not throw away stir bars--recover them
--dissolve all of the H2salen and Cusalen--no
precipitates